Intermittent hypoxia (IH) is a hallmark of obstructive sleep apnea (OSA), which is related to tumorigenesis and progression. We explored the possible mechanisms by which OSA may promote the development of non-small cell lung cancer (NSCLC). In this study, NSCLC cells with and without miR-106a-5p inhibition were exposed to IH or room air (RA), and subsequently, exosomes were extracted and identified. Macrophages were incubated with these exosomes to detect the expression of the STAT3 signaling pathway and M2-type macrophage markers, as well as the effect of the macrophages on the malignancy of NSCLC cells. A nude mouse tumorigenesis model was constructed to detect the effects of exosomal miR-106a-5p on M2 macrophage polarization and NSCLC cell malignancy. Our results showed that IH exosomes promoted the polarization of M2 macrophages, thereby promoting the proliferation, invasion, and metastasis of NSCLC cells. Further, Based on microarray analysis of RA and IH exosomes, we discovered that miR-106a-5p, transferred to the macrophages through exosomes, participated in this mechanism by promoting M2 macrophage polarization via down-regulating PTEN and activating the STAT3 signaling pathway in vitro and in vivo. For patients with NSCLC and OSA, exosomal miR-106a-5p levels showed a positive relation to AHI. Exosomal miR-106a-5p represents a potential therapeutic target among patients with concomitant cancer and NSCLC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291016PMC
http://dx.doi.org/10.14814/phy2.16157DOI Listing

Publication Analysis

Top Keywords

exosomal mir-106a-5p
16
nsclc cells
12
lung cancer
8
cancer nsclc
8
stat3 signaling
8
signaling pathway
8
macrophage polarization
8
nsclc
7
mir-106a-5p
5
exosomes
5

Similar Publications

Exosomal miR-106a-5p from highly metastatic colorectal cancer cells drives liver metastasis by inducing macrophage M2 polarization in the tumor microenvironment.

J Exp Clin Cancer Res

October 2024

Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.

Background: The tumor microenvironment (TME) is a dynamic system orchestrated by intricate cell-to-cell crosstalk. Specifically, macrophages within the TME play a crucial role in driving tumor progression. Exosomes are key mediators of communication between tumor cells and the TME.

View Article and Find Full Text PDF

Intermittent hypoxia (IH) is a hallmark of obstructive sleep apnea (OSA), which is related to tumorigenesis and progression. We explored the possible mechanisms by which OSA may promote the development of non-small cell lung cancer (NSCLC). In this study, NSCLC cells with and without miR-106a-5p inhibition were exposed to IH or room air (RA), and subsequently, exosomes were extracted and identified.

View Article and Find Full Text PDF

This study investigates the molecular mechanisms by which extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSCs) promote M2 polarization of macrophages and thus reduce lung injury caused by sepsis. High-throughput sequencing was used to identify differentially expressed genes related to long non-coding RNA (lncRNA) in ADSC-derived EVs (ADSC-EVs) in sepsis lung tissue. Weighted gene co-expression network analysis (WGCNA) was employed to predict the downstream target genes of the lncRNA DLEU2.

View Article and Find Full Text PDF

Altered Extracellular Vesicle miRNA Profile in Prodromal Alzheimer's Disease.

Int J Mol Sci

September 2023

Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy.

Extracellular vesicles (EVs) are nanosized vesicles released by almost all body tissues, representing important mediators of cellular communication, and are thus promising candidate biomarkers for neurodegenerative diseases like Alzheimer's disease (AD). The aim of the present study was to isolate total EVs from plasma and characterize their microRNA (miRNA) contents in AD patients. We isolated total EVs from the plasma of all recruited subjects using ExoQuickULTRA exosome precipitation solution (SBI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!