Compressed ternary alloy superhydrides are currently considered to be the most promising competitors for high-temperature superconducting materials. Here, the stable stoichiometries in the Y-Hf-H ternary system under pressure are comprehensively explored in theory and four fresh phases are predicted: Pmna-YHfH and P4/mmm-YHfH at 200 GPa, P4/mmm-YHfH at 300 GPa and P-6m2-YHfH at 400 GPa. The four Y-Hf-H ternary phases are thermodynamically and dynamically stable at corresponding pressure. In addition, structural features, bonding characteristics, electronic properties, and superconductivity of the four ternary Y-Hf-H phases are systematically calculated and discussed. As the hydrogen content and the density of states of H atoms at the Fermi level increase, the superconducting transition temperatures (T) of Y-Hf-H system are significantly enhanced. The P-6m2-YHfH with high hydrogen content exhibits a high calculated T value of 130 K at 400 GPa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291659 | PMC |
http://dx.doi.org/10.1038/s41598-024-68697-w | DOI Listing |
ACS Omega
December 2024
Research Center for Advanced Computing Infrastructure, JAIST, 1-1 Asahidai, Nomi 923-1211, Ishikawa, Japan.
There has been a marked increase in interest in high-temperature superconductors over the past few years, sparked by their potential to revolutionize multiple fields, including energy generation and transportation. A particularly promising avenue of exploration has emerged in the form of ternary superhydrides, compounds composed of hydrogen along with two other rare-earth elements. Our investigation focuses on the search for Y-Th-H ternary compounds; employing an evolutionary search methodology complemented by electron-phonon calculations reveals a stable superhydride, 6̅2-YThH, capable of exhibiting a critical temperature ( ) as high as 222 K at 200 GPa along a few low- novel hydrides.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
U.S. DOE and Department of Physics and Astronomy, Iowa State University, U.S. DOE and Department of Physics and Astronomy, Ames, Iowa, 50011-2042, UNITED STATES.
A Ca2B4C4 ternary compound obtained by using a machine learning (ML) guided structure search is found to be metastable with a formation energy of only 18 meV/atom above the convex hull but exhibits only marginal superconducting transition temperature (Tcc). By replacing Ca with Na, the electronic density of states (DOS) at the Fermi level is significantly enhanced, increasing the predicted Tc to 21.9 K.
View Article and Find Full Text PDFChemistry
December 2024
Universität des Saarlandes: Universitat des Saarlandes, Institut für Anorganische und Analytische Chemie, 48149, Saarbrücken, GERMANY.
Laves phases are an interesting field of research when it comes to structural chemistry and physical properties. Investigations of the ternary system Zr-V-Al showed, in contrast to the system Hf-V-Al, that no superstructures can be observed within the solid solution Zr(V1-xAlx)2. High values of x form aluminum rich phases that adopt the hexagonal MgZn2 type structure while low values of x lead to vanadium rich phases that adopt the cubic MgCu2 type.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany.
Ternary hybrid thin films composed of a diblock copolymer templating two types of nanoparticles (NPs) expand the functionality of binary systems, which renders them interesting for magnetic sensing or magnetic data storage applications. Herein, one-pot slot-die printed hybrid polystyrene--poly(methyl methacrylate) (PS--PMMA) thin films are prepared with iron oxide (magnetite, FeO, = 20 nm) and nickel NPs (Ni, = 46 nm) in one step by the advanced slot-die coating technique, which facilitates upscaling of fabrication. The evolution of the hybrid film morphology is probed with in situ grazing-incidence small-angle X-ray scattering and compared to that of a PS--PMMA thin film without NPs.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Extreme Conditions Physics Research Laboratory and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
Recently, experimental observation has shown that the substitutional alloy (Ce,La)H can be successfully synthesized under high pressure, approximately 90-170 GPa, and become a superconductor with a high critical temperature () superconductivity in ternary rare-earth clathrate hydrides between 148-178 K. In this work, we theoretically simplified the hydride alloy (Ce,La)H, a compound in a series that could function as a potential superconductor, with CeLaH exhibiting strong electron-phonon coupling (EPC). The CeLaH alloy is scrutinized for its lattice dynamical stability in the pressure range of 100 to 150 GPa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!