Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Muscle synergy analyses are used to enhance our understanding of motor control. Spatially fixed synergy weights coordinate multiple co-active muscles through activation commands, known as activation coefficients. To gain a more comprehensive understanding of motor learning, it is essential to understand how activation coefficients vary during a learning task and at different levels of movement proficiency. Participants walked on a line, a beam, and learned to walk on a tightrope-tasks that represent different levels of proficiency. Muscle synergies were extracted from electromyography signals across all conditions and the number of synergies was determined by the knee-point of the total variance accounted for (tVAF) curve. The results indicated that the tVAF of one synergy decreased with task proficiency, with the tightrope task resulting in the highest tVAF compared to the line and beam tasks. Furthermore, with increasing proficiency and after a learning process, trial-to-trial similarity increased and temporal overlap of synergy activation coefficients decreased. Consequently, we propose that precise adjustment and refinement of synergy activation coefficients play a pivotal role in motor learning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291506 | PMC |
http://dx.doi.org/10.1038/s41598-024-68515-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!