A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Language or rating scales based classifications of emotions: computational analysis of language and alexithymia. | LitMetric

AI Article Synopsis

  • Rating scales are commonly used to assess mental health but may not be as effective as language-based responses in accurately conveying emotional states.
  • A study involving two phases found that narratives about emotions were better classified through computational analysis of language than through traditional rating scales.
  • Higher levels of alexithymia made narratives harder to classify, but it did not affect the accuracy of classification for either method, indicating that language analysis could enhance mental health assessments.

Article Abstract

Rating scales are the dominating tool for the quantitative assessment of mental health. They are often believed to have a higher validity than language-based responses, which are the natural way of communicating mental states. Furthermore, it is unclear how difficulties articulating emotions-alexithymia-affect the accuracy of language-based communication of emotions. We investigated whether narratives describing emotional states are more accurately classified by questions-based computational analysis of language (QCLA) compared to commonly used rating scales. Additionally, we examined how this is affected by alexithymia. In Phase 1, participants (N = 348) generated narratives describing events related to depression, anxiety, satisfaction, and harmony. In Phase 2, another set of participants summarized the emotions described in the narratives of Phase 1 in five descriptive words and rating scales (PHQ-9, GAD-7, SWLS, and HILS). The words were quantified with a natural language processing model (i.e., LSA) and classified with machine learning (i.e., multinomial regression). The results showed that the language-based responses can be more accurate in classifying the emotional states compared to the rating scales. The degree of alexithymia did not influence the correctness of classification based on words or rating scales, suggesting that QCLA is not sensitive to alexithymia. However, narratives generated by people with high alexithymia were more difficult to classify than those generated by people with low alexithymia. These results suggest that the assessment of mental health may be improved by language-based responses analyzed by computational methods compared to currently used rating scales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291691PMC
http://dx.doi.org/10.1038/s44184-024-00080-zDOI Listing

Publication Analysis

Top Keywords

rating scales
28
language-based responses
12
computational analysis
8
analysis language
8
assessment mental
8
mental health
8
narratives describing
8
emotional states
8
generated people
8
scales
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!