Pancreatic cancer (PC) is one of the most common malignant tumors of the digestive tract and has a very high mortality rate worldwide. Different PC patients may respond differently to therapy and develop therapeutic resistance due to the complexity and variety of the tumor microenvironment. The Eph/ephrin signaling pathway is extensively involved in tumor-related biological functions. However, the key function of the Eph/ephrin signaling pathway in PC has not been fully elucidated. We first explored a pan-cancer overview of Eph/ephrin signaling pathway genes (EPGs). Then we grouped the PC patients into 3 subgroups based on EPG expression levels. Significantly different prognoses and tumor immune microenvironments between different subtypes further validate Eph/ephrin's important role in the pathophysiology of PC. Additionally, we estimated the IC50 values for several commonly used molecularly targeted drugs used to treat PC in the three clusters, which could help patients receive a more personalized treatment plan. Following a progressive screening of optimal genes, we established a prognostic signature and validated it in internal and external test sets. The receiver operating characteristic (ROC) curves of our model exhibited great predictive performance. Meanwhile, we further validated the results through qRT-PCR and immunohistochemistry. Overall, this research provides fresh clues on the prognosis and therapy of PC as well as the theoretical groundwork for future Eph/ephrin signaling pathway research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291735 | PMC |
http://dx.doi.org/10.1038/s41598-024-68385-9 | DOI Listing |
J Neurosci
December 2024
Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH). Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550 (Spain)
Eph/ephrin signaling is crucial for organizing retinotopic maps in vertebrates. Unlike other EphAs, which are expressed in the embryonic ventral retina, EphA4 is found in the retinal ganglion cell (RGC) layer at perinatal stages, and its role in mammalian visual system development remains unclear. Using classic stripe assays, we demonstrate that, while RGC axons are repelled by ephrinB2, they grow on ephrinB1 stripes through EphA4-mediated adhesion.
View Article and Find Full Text PDFSignal Transduct Target Ther
November 2024
Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China.
Aging (Albany NY)
October 2024
School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA.
Disruption of Eph-ephrin bidirectional signaling leads to human congenital and age-related cataracts, but the mechanisms for these opacities in the eye lens remain unclear. Eph receptors bind to ephrin ligands on neighboring cells to induce canonical ligand-mediated signaling. The EphA2 receptor also signals non-canonically without ligand binding in cancerous cells, leading to epithelial-to-mesenchymal transition (EMT).
View Article and Find Full Text PDFSci Rep
July 2024
Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
Front Ophthalmol (Lausanne)
June 2024
School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States.
Cataracts, defined as any opacity in the transparent ocular lens, remain the leading cause of blindness and visual impairment in the world; however, the etiology of this pathology is not fully understood. Studies in mice and humans have found that the EphA2 receptor and the ephrin-A5 ligand play important roles in maintaining lens homeostasis and transparency. However, due to the diversity of the family of Eph receptors and ephrin ligands and their promiscuous binding, identifying functional interacting partners remains a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!