Global impervious surface area (ISA) has more than doubled over the last three decades, but the associated carbon emissions resulting from the depletion of pre-existing land carbon stores remain unknown. Here, we report that the carbon losses from biomass and top soil (0-30 cm) due to global ISA expansion reached 46-75 Tg C per year over 1993-2018, accounting for 3.7-6.0% of the concurrent human land-use change emissions. For the Annex I countries of UNFCCC, our estimated emissions are comparable to the carbon emissions arising from settlement expansion as reported by the national greenhouse gas inventories, providing independent validation of this kind. The contrast between growing emissions in non-Annex I countries and declining ones in Annex I countries over the study period can be explained by an observed emerging pattern of emissions evolution dependent on the economic development stage. Our study has implications for international carbon accounting and climate mitigation as it reveals previously ignored but substantial contributions of ISA expansion to anthropogenic carbon emissions through land-use effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291968PMC
http://dx.doi.org/10.1038/s41467-024-50840-wDOI Listing

Publication Analysis

Top Keywords

carbon emissions
16
emissions
8
impervious surface
8
surface area
8
isa expansion
8
annex countries
8
carbon
7
substantial terrestrial
4
terrestrial carbon
4
emissions global
4

Similar Publications

The pressing necessity to mitigate climate change and decrease greenhouse gas emissions has driven the advancement of heterostructure-based photocatalysts for effective CO₂ reduction. This study introduces a novel heterojunction photocatalyst formed by integrating potassium-doped polymeric carbon nitride (KPCN) with metallic Zn₃N₂, synthesized via a microwave-assisted molten salt method. The resulting Schottky contact effectively suppresses the reverse diffusion of electrons, achieving spatial separation of photogenerated charges and prolonging their lifetime, which significantly enhances photocatalytic activity and efficiency.

View Article and Find Full Text PDF

This research chooses Pakistan as an ideal case to explore the connection between economic expansion and carbon emissions, by incorporating a novel approach of using coupled stochastic equations to estimate this dynamic interaction.The GDP (Gross domestic product) in Pakistan has been ascending over the time of 1960-2023, with short episodes of stagnation (mid 80s) and decline (1973, 2009). Since 2010, the growth rate has been rising annually, reaching 4.

View Article and Find Full Text PDF

Carbon reduction effect of comprehensive land consolidation and its configuration paths at the township level: A case study of Zhejiang Province, China.

J Environ Manage

January 2025

College of Management of Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Key Laboratory of Philosophy and Social Science, National Key Laboratory of Food Security and Tianfu Granary, Sichuan Agricultural University, Chengdu, 611130, China. Electronic address:

Changing land use is one of the main factors influencing global climate change and the imbalance in the carbon cycle. Consequently, the focus of international organizations and the academic community is on strategies to mitigate carbon emissions or improve carbon sequestration by optimizing land use structure and function. Since 2019, China's Zhejiang Province has implemented a township-level pilot policy, exploring a comprehensive land consolidation (CLC for short) pilot policy that includes all elements of "mountains, rivers, forests, farmlands, lakes, and grasslands.

View Article and Find Full Text PDF

The community dynamic alterations mechanisms of traveling plastics in the Pearl River estuary with the salinity influence.

Water Res

December 2024

College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China. Electronic address:

Most ocean plastics originate from terrestrial emissions, and the plastisphere on the plastics would alter during the traveling due to the significant differences in biological communities between freshwater and marine ecosystems. Microorganisms are influenced by the increasing salinity during traveling. To understand the contribution of plastic on the alteration in biological communities of plastisphere during traveling, this study investigated the alterations in microbial communities on plastics during the migration from freshwater to brackish water and saltwater.

View Article and Find Full Text PDF

Inorganic bioelectric system for nitrate removal with low NO production at cold temperatures of 4 and 10 °C.

Water Res

December 2024

Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, 2800 Kgs, Lyngby, Denmark. Electronic address:

Groundwater, essential for ecological stability and freshwater supply, faces escalating nitrate contamination. Traditional biological methods struggle with organic carbon scarcity and low temperatures, leading to an urgent need to explore efficient approaches for groundwater remediation. In this work, we proposed an inorganic bioelectric system designed to confront these challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!