Kagome lattices constitute versatile platforms for studying paradigmatic correlated phases. While molecular self-assembly of kagome structures on metallic substrates is promising, it is challenging to realize pristine kagome properties because of hybridization with the bulk degrees of freedom and modified electron-electron interactions. We suggest that a superconducting substrate offers an compelling platform for realizing a magnetic kagome lattice. Exchange coupling induces kagome-derived bands at the interface, which are protected from the bulk by the superconducting energy gap. We realize a magnetic kagome lattice on a superconductor by depositing Fe-porphin-chloride molecules on Pb(111) and using temperature-activated de-chlorination and self-assembly. This allows us to control the formation of smaller kagome precursors and long-range ordered kagome islands. Using scanning tunneling microscopy and spectroscopy at 1.6 K, we identify Yu-Shiba-Rusinov states inside the superconducting energy gap and track their hybridization from the precursors to larger islands, where the kagome lattice induces extended YSR bands. These YSR-derived kagome bands inside the superconducting energy gap allow for long-range coupling and induced pairing correlations, motivating further studies to resolve possible spin-liquid or Kondo-lattice-type behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291492 | PMC |
http://dx.doi.org/10.1038/s41467-024-50829-5 | DOI Listing |
Chemistry
January 2025
Indian Institute of Science Education and Research (IISER), Chemistry, Dr. Homi Bhabha Road, Pashan, 411008, Pune, INDIA.
Metal-organic frameworks (MOFs) are a fascinating class of structured materials with diverse functionality originating from the distinctive physicochemical properties. This review focuses on the specific chemical design of geometrically frustrated MOFs along with the origin of the intriguing magnetic properties. We have discussed the arrangement of spin centres (metal and ligand) which are responsible for the unusual magnetic phenomena in MOFs.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Physics, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang, 37673, Korea (the Republic of).
Janus materials, a novel class of materials with two faces of different chemical compositions and electronic polarities, offer significant potential for various applications with catalytic reactions, chemical sensing, and optical or electronic responses. A key aspect for such functionalities is face-dependent electronic bipolarity, which is usually limited by the chemical distinction of terminated surfaces and has not been exploited in the semiconducting regime. Here, it is showed that a Janus and Kagome van der Waals (vdW) material NbTeI has ferroelectric-like coherent stacking of the Janus layers and hosts strong electronic bipolar states in the semiconducting regime.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
The University of Hong Kong, Department of Chemistry, Pokfulam Road, 999077, Hong Kong, CHINA.
Electrically conductive coordination polymers (ECCPs), particularly those incorporating benzenehexathiol (BHT) ligands, are emerging as a distinctive class of electronic materials with tunable semiconducting and metallic properties. However, the exploration of novel ECCPs with low-symmetry structures and electrical anisotropy remains under development. Here, we report the on-water surface synthesis of a novel ECCP, namely Cu5BHT, which exhibits a low-symmetry structure and unique in-plane electrical anisotropy that differs from the well-known Cu3BHT phase.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Structural Analysis for Industrial Equipment & School of Physics, Dalian University of Technology, Dalian 116024 People's Republic of China.
Nanotechnology
January 2025
Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Bloco 922, 60455-900, Fortaleza, 60455-900, BRAZIL.
We investigate the electronic properties of nanoribbons made out of monolayer Lieb, transition, and kagome lattices using the tight-binding model with a generic Hamiltonian. It allows us to map the evolutionary stages of the interconvertibility process between Lieb and kagome nanoribbons by means of only one control parameter. Results for the energy spectra, the density of states, and spatial probability density distributions are discussed for nanoribbons with three types of edges: straight, bearded, and asymmetric.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!