DPANN archaea are a diverse group of microorganisms characterised by small cells and reduced genomes. To date, all cultivated DPANN archaea are ectosymbionts that require direct cell contact with an archaeal host species for growth and survival. However, these interactions and their impact on the host species are poorly understood. Here, we show that a DPANN archaeon (Candidatus Nanohaloarchaeum antarcticus) engages in parasitic interactions with its host (Halorubrum lacusprofundi) that result in host cell lysis. During these interactions, the nanohaloarchaeon appears to enter, or be engulfed by, the host cell. Our results provide experimental evidence for a predatory-like lifestyle of an archaeon, suggesting that at least some DPANN archaea may have roles in controlling host populations and their ecology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291902PMC
http://dx.doi.org/10.1038/s41467-024-49962-yDOI Listing

Publication Analysis

Top Keywords

dpann archaea
12
host species
8
host cell
8
host
6
parasitic lifestyle
4
lifestyle archaeal
4
archaeal symbiont
4
dpann
4
symbiont dpann
4
archaea diverse
4

Similar Publications

Subterranean estuaries (STEs) are critical ecosystems at the interface of meteoric groundwater and subsurface seawater that are threatened by sea level rise. To characterize the influence of tides and waves on the STE microbial community, we collected porewater samples from a high-energy beach STE at Stinson Beach, California, USA, over the two-week neap-spring tidal transition during both a wet and dry season. The microbial community, analyzed by 16S rRNA gene (V4) amplicon sequencing, clustered according to consistent physicochemical features found within STEs.

View Article and Find Full Text PDF

Lineage-dependent partitioning of activities in chemoclines defines Woesearchaeota ecotypes in an extreme aquatic ecosystem.

Microbiome

November 2024

UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France.

Article Synopsis
  • The study explores the diversity and ecological roles of Woesearchaeota in Lake Dziani Dzaha, revealing their unique genomic features and lifestyles.
  • Researchers identified two distinct populations of Woesearchaeota with a bimodal distribution in depth, linked to different chemical environments, indicating their complex interactions within the microbial community.
  • The findings challenge existing beliefs about the metabolic dependencies of Woesearchaeota, suggesting they exhibit adaptive lifestyles that contribute significantly to ecosystem dynamics.
View Article and Find Full Text PDF

Recent successes in the cultivation of DPANN archaea with their hosts have demonstrated an episymbiotic lifestyle, whereas the lifestyle of DPANN archaea in natural habitats is largely unknown. A free-living lifestyle is speculated in oxygen-deprived fluids circulated through rock media, where apparent hosts of DPANN archaea are lacking. Alternatively, DPANN archaea may be detached from their hosts and/or rock surfaces.

View Article and Find Full Text PDF

Unique Features of Extremely Halophilic Microbiota Inhabiting Solar Saltworks Fields of Vietnam.

Microorganisms

September 2024

Institute of Polar Research, Institute of Polar Sciences, National Council of Research ISP-CNR, Via San Raineri 86, 98122 Messina, Italy.

Article Synopsis
  • The artificial solar saltworks fields of Hon Khoi in southern Vietnam are crucial for industry and biodiversity, characterized by extreme conditions like high salinity and intense UV radiation.
  • A metabarcoding study was conducted to analyze the unique prokaryotic communities in these saltworks, comparing them with other saline environments in northern Vietnam and Italy.
  • Findings revealed significant structural instability in prokaryotic communities due to pond reuse, but also identified specific ultra-small prokaryotic clades unique to Hon Khoi, highlighting the need for further research to explore their ecological and potential biotechnological roles.
View Article and Find Full Text PDF

Metagenomic characterization of viruses and mobile genetic elements associated with the DPANN archaeal superphylum.

Nat Microbiol

December 2024

College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, People's Republic of China.

The archaeal superphylum DPANN (an acronym formed from the initials of the first five phyla discovered: Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanohaloarchaeota and Nanoarchaeota) is a group of ultrasmall symbionts able to survive in extreme ecosystems. The diversity and dynamics between DPANN archaea and their virome remain largely unknown. Here we use a metagenomic clustered regularly interspaced short palindromic repeats (CRISPR) screening approach to identify 97 globally distributed, non-redundant viruses and unclassified mobile genetic elements predicted to infect hosts across 8 DPANN phyla, including 7 viral groups not previously characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!