AI Article Synopsis

  • Periodontitis is linked to the development of diabetes, with the bacteria Porphyromonas gingivalis potentially contributing to insulin resistance (IR) through periodontal inflammation.
  • The study analyzed clinical samples and conducted experiments on cultured cells and mice, finding a correlation between P. gingivalis and IR, suggesting that the bacteria negatively impacts insulin receptor expression and glucose uptake.
  • Results indicate that P. gingivalis can degrade insulin receptors via its protease (gingipain), leading to IR, and highlight the potential for targeting periodontal pathogens as a strategy to prevent diabetes.*

Article Abstract

Periodontitis is a critical risk factor for the occurrence and development of diabetes. Porphyromonas gingivalis may participate in insulin resistance (IR) caused by periodontal inflammation, but the functional role and specific mechanisms of P. gingivalis in IR remain unclear. In the present study, clinical samples were analysed to determine the statistical correlation between P. gingivalis and IR occurrence. Through culturing of hepatocytes, myocytes, and adipocytes, and feeding mice P. gingivalis orally, the functional correlation between P. gingivalis and IR occurrence was further studied both in vitro and in vivo. Clinical data suggested that the amount of P. gingivalis isolated was correlated with the Homeostatic Model Assessment for IR score. In vitro studies suggested that coculture with P. gingivalis decreased glucose uptake and insulin receptor (INSR) protein expression in hepatocytes, myocytes, and adipocytes. Mice fed P. gingivalis tended to undergo IR. P. gingivalis was detectable in the liver, skeletal muscle, and adipose tissue of experimental mice. The distribution sites of gingipain coincided with the downregulation of INSR. Gingipain proteolysed the functional insulin-binding region of INSR. Coculture with P. gingivalis significantly decreased the INSR-insulin binding ability. Knocking out gingipain from P. gingivalis alleviated the negative effects of P. gingivalis on IR in vivo. Taken together, these findings indicate that distantly migrated P. gingivalis may directly proteolytically degrade INSR through gingipain, thereby leading to IR. The results provide a new strategy for preventing diabetes by targeting periodontal pathogens and provide new ideas for exploring novel mechanisms by which periodontal inflammation affects the systemic metabolic state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291925PMC
http://dx.doi.org/10.1038/s41368-024-00313-zDOI Listing

Publication Analysis

Top Keywords

gingivalis
14
porphyromonas gingivalis
8
insulin resistance
8
periodontal inflammation
8
correlation gingivalis
8
gingivalis occurrence
8
hepatocytes myocytes
8
myocytes adipocytes
8
coculture gingivalis
8
gingivalis decreased
8

Similar Publications

Defining the role of Hmu and Hus systems in Porphyromonas gingivalis heme and iron homeostasis and virulence.

Sci Rep

December 2024

Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland.

Iron and heme are essential nutrients for all branches of life. Pathogenic members of the Bacteroidota phylum, including Porphyromonas gingivalis, do not synthesize heme and rely on host hemoproteins for heme as a source of iron and protoporphyrin IX. P.

View Article and Find Full Text PDF

Gelatin methacryloyl @MP196/exos hydrogel induced neutrophil apoptosis and macrophage M2 polarization to inhibit periodontal bone loss.

Colloids Surf B Biointerfaces

December 2024

Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070,  PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China. Electronic address:

Objectives: Periodontitis is an inflammatory and destructive disease caused by dental plaque, which can result in the immune microenvironment disorders and loss of periodontal support tissue. In order to promote the restoration of local microenvironment stability, a functional biomaterial Gelatin methacryloyl @MP196/exos based on characteristics of disease occurrence is designed.

Methods: Transmission electron microscopy, nanosight particle tracking analysis and western blot analysis were applied to prove the presence of exos in GelMA@MP196/exos.

View Article and Find Full Text PDF

Anti-Inflammatory Effects of Extract in -Stimulated RAW 264.7 Cells.

Curr Issues Mol Biol

November 2024

Institute of Biomaterial • Implant, Department of Oral Anatomy, School of Dentistry, Wonkwang University, Iksan 54538, Republic of Korea.

has been used both as a food and in traditional medicine. However, its anti-inflammatory effects in periodontal diseases have not been studied. We examined the anti-inflammatory properties of extract in RAW 264.

View Article and Find Full Text PDF

Cathepsin B Modulates Alzheimer's Disease Pathology Through SAPK/JNK Signals Following Administration of Porphyromonas gingivalis-Derived Outer Membrane Vesicles.

J Clin Periodontol

December 2024

Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China.

Aim: Porphyromonas gingivalis, a consensus periodontal pathogen, is thought to be involved in Alzheimer's disease (AD) progression, and P. gingivalis-derived outer membrane vesicles (PgOMVs) are a key toxic factor in inducing AD pathology. This study aimed to clarify the regulatory mechanism underlying the PgOMV-induced AD-like phenotype.

View Article and Find Full Text PDF

An HRP-integrated CRISPR/Cas12a biosensor towards chair-side diagnosis for Porphyromonas gingivalis.

Biotechnol Lett

December 2024

Key Laboratory of Environmental Chemistry and Ecotoxicology of Organic Pollutants of Chongqing, Ecological and Environment Monitoring Center of Chongqing, 252 Qishan Road, Chongqing, 401132, China.

Rapid diagnostic tools for Porphyromonas gingivalis (Pg), the primary microorganism responsible for the development of periodontitis, particularly those designed for chair-side applications, could provide substantial health benefits to patients. To address this issue, we developed a CRISPR/Cas12a-based rapid Pg detection method. Dual-gRNA and hairpin reporter strategies were employed to enhance CRISPR/Cas12a reaction efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!