A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design and Synthesis of Sb-Doped CuS@C Hollow Nanocubes as Efficient Anode Materials for Sodium-Ion Battery. | LitMetric

Design and Synthesis of Sb-Doped CuS@C Hollow Nanocubes as Efficient Anode Materials for Sodium-Ion Battery.

ChemSusChem

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Published: July 2024

Copper sulfide has received widespread attention for application as anode materials in sodium-ion batteries due to their potent capabilitiess and eco-friendly properties. However, it is a challenge to achieve a high rate capability and long cycle stability owing to the heterogeneous transfer of sodium ions during charge-discharge, the interior poor electron conductivity and repeated volumetric expansion of copper sulfide. In this study, Sb-doped copper sulfide hollow nanocubes coated with carbon shells (Sb-CuS@C) was designed and constructed as anode nanomaterials in sodium-ion batteries. Thanks to the intrinsic good electron conductivity and chemical stability of carbon shells, Sb-CuS@C possesses a higher overall electron transfer as anode material, avoids agglomeration and structural destruction during the cycling. As a result, the synthesized Sb-CuS@C achieved an excellent reversible capacity of 595 mA h g after 100 cycles at 0.5 A g and a good rate capability of 340 mA h g at a higher 10 A g. DFT calculations clarify that the uniformly doped Sb would act as active sodiophilic nucleation sites to help adsorbing sodium-ion during discharging and leading uniform sodium deposition. This work provides a new insight into the structural and componential modification for common transition-metal sulfides towards application as anode materials in sodium-ion battery.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202401271DOI Listing

Publication Analysis

Top Keywords

anode materials
12
materials sodium-ion
12
copper sulfide
12
hollow nanocubes
8
sodium-ion battery
8
application anode
8
sodium-ion batteries
8
rate capability
8
electron conductivity
8
carbon shells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!