A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis and challenges of fluorinated divinyl urethane monomers as a strategy for masking hydrolytic sensitive methacrylate groups in resin composites. | LitMetric

Synthesis and challenges of fluorinated divinyl urethane monomers as a strategy for masking hydrolytic sensitive methacrylate groups in resin composites.

Dent Mater

Institute of Biomedical Engineering, University of Toronto, Ontario, Canada; Faculty of Dentistry, University of Toronto, Canada; Translational Biology and Engineering Program, University of Toronto, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada. Electronic address:

Published: October 2024

Objective: The biodegradation of methacrylate (MA)-based dental restoratives has been suggested to contribute to a loss of adhesion and subsequent detachment, or secondary caries, both major causes of restoration failure. Previous studies have demonstrated that intermolecular interactions between resin monomers may affect the hydrolytic-susceptibility of composites. Altering the intermolecular interactions by shielding or masking the hydrolytically-susceptible ester groups found in MA monomers could be an effective strategy to mitigate the biodegradation of resin composites. The objective of this work was to assess whether shielding/masking MAs using fluorinated groups could improve the biostability of experimental composites.

Methods: Eight fluorinated monomers (FM) were synthesized, characterized (H NMR), and formulated into experimental resin composites (FC, 65 wt%, microfill). FCs were assessed for interactions with water (water contact angle, water sorption, gel fraction), mechanical properties (both compressive and flexural strength and modulus), cytocompatibility, resistance to biodegradation using simulated human salivary esterase (SHSE) and compared to a control composite (CC) without FM.

Results: Integration of FMs was found to generally decrease both the physical and mechanical properties under all incubation conditions when compared to the CC. Additionally, all FCs had a negative influence on composite biodegradation following immersion in SHSE when compared to the CC.

Significance: Shielding/masking MA-esters inherently inserts molecular spaces between the polymer chains within the resin network, and shielding is likely not possible while also maintaining the necessary cohesive forces that regulate the physical and mechanical properties of resin composites. Novel dental resin development should seek to remove/replace vulnerable ester-containing MAs rather that adopting a shielding/masking approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2024.07.006DOI Listing

Publication Analysis

Top Keywords

resin composites
16
mechanical properties
12
composites objective
8
intermolecular interactions
8
shse compared
8
physical mechanical
8
resin
7
composites
5
synthesis challenges
4
challenges fluorinated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!