A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative evaluation of biodegradation of chlorpyrifos by various bacterial strains: Kinetics and pathway elucidation. | LitMetric

Comparative evaluation of biodegradation of chlorpyrifos by various bacterial strains: Kinetics and pathway elucidation.

Pestic Biochem Physiol

Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Published: August 2024

The present study focused on the isolation and identification of CP and TCP bacteria degrading bacteria from the rhizospheric zone of aromatic grasses i.e. palmarosa (Cymbopogon martinii (Roxb. Wats), lemongrass (Cymbopogon flexuosus) and vetiver (Chrysopogon zizaniodes (L.) Nash.). So that these isolates alone or in combination with the vegetation of aromatic grasses will be used to clean up CP-contaminated soils. The study also explored enzymatic activities, CO release, dechlorination potential, and degradation pathways of bacterial strains. A total of 53 CP-tolerant bacteria were isolated on their physical characteristics and their ability to degrade CP. The ten highly CP-tolerant isolates were Pseudomonas aeruginosa Pa608, three strains of Pseudomonas hibiscicola R4-721 from different rhizosphere, Enterococcus lectis PP2a, Pseudomonas monteilii NBFPALD_RAS131, Enterobacter cloacae L3, Stenotrophomonas maltophilia PEG-390, Escherichia coli ABRL132, and Escherichia coli O104:H4 strain FWSEC0009. The CO emission and phosphatase activities of the isolates varied from 3.1 to 8.6 μmol mL and 12.3 to 31 μmol PNP h, respectively in the CP medium. The degradation kinetics of CP by these isolates followed a one-phase decay model with a dissipation rate ranging from 0.048 to 0.41 d and a half-life of 1.7-14.3 days. The growth data fitted in the SGompertz equation showed a growth rate (K) of 0.21 ± 0.28 to 0.91 ± 0.33 d. The P. monteilii strain had a faster growth rate while E. coli ABRL132 had slower growth among the isolates. The rate of TCP accumulation calculated by the SGompertz equation was 0.21 ± 0.02 to 1.18 ± 0.19 d. The Pseudomonas monteilii showed a lower accumulation rate of TCP. Among these, four highly effective isolates were Pseudomonas aeruginosa Pa608, Pseudomonas monteilii NBFPALD_RAS131, Stenotrophomonas maltophilia PEG-390, and Pseudomonas hibiscicola R4-721. Illustrations of the degradation pathways indicated that the difference in metabolic pathways of each isolate was associated with their growth rate, phosphatase, dehydrogenase, oxidase, and dechlorination activities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2024.105989DOI Listing

Publication Analysis

Top Keywords

pseudomonas monteilii
12
growth rate
12
bacterial strains
8
aromatic grasses
8
degradation pathways
8
isolates pseudomonas
8
pseudomonas aeruginosa
8
aeruginosa pa608
8
pseudomonas hibiscicola
8
hibiscicola r4-721
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!