Cell Painting unravels insecticidal modes of action on Spodoptera frugiperda insect cells.

Pestic Biochem Physiol

R&D Hit Discovery, Bayer AG, Crop Science Division, Monheim, Germany. Electronic address:

Published: August 2024

The "Cell Painting" technology utilizes multiplexed fluorescent staining of various cell organelles, to produce high-content microscopy images of cells for multidimensional phenotype assessment. The phenotypic profiles extracted from those images can be analyzed upon perturbations with biologically active molecules to annotate the mode of action or biological activity by comparison with reference profiles of already known mechanisms of action, ultimately enabling the determination of on-target and off-target effects. This approach is already described in various human cell cultures, the most commonly used being the U2OS cell line, yet allows broad applications in additional areas of chemical-biological research. Here we describe for the first time the application and adaptation of Cell Painting to an insect cell line, the Sf9 cells from Spodoptera frugiperda. By adjusting image acquisition and analysis models, specific phenotypic profiles were obtained in a dose-dependent manner for 20 reference compounds, including representatives for the most relevant insecticidal modes of action categories (nerve & muscle, respiration and growth & development). Through a dimensionality-reduction method, both calculations of phenotypic half maximal inhibition concentration (IC) values as well as similarity analysis of the obtained profiles by hierarchical clustering were performed. By Cell Painting effects on the phenotype could be obtained at higher sensitivity than in other assay formats, such as cytotoxicity assessments. More importantly, these analyses provide insight into mechanistic determinants of biological activity. Compounds with similar modes of action showed a high degree of proximity in a hierarchical clustering analysis while being distinct from actives with an unrelated mode of action. In essence, we provide strong evidence on the impact of Cell Painting mechanistic understanding of insecticides with regards to determinants of efficacy and safety utilizing an insect cell model system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2024.105983DOI Listing

Publication Analysis

Top Keywords

cell painting
16
modes action
12
cell
9
insecticidal modes
8
spodoptera frugiperda
8
phenotypic profiles
8
mode action
8
biological activity
8
insect cell
8
hierarchical clustering
8

Similar Publications

Imaging phenotype reveals that disulfirams induce protein insolubility in the mitochondrial matrix.

Sci Rep

December 2024

Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, 422-8526, Shizuoka, Japan.

The cell painting assay is useful for understanding cellular phenotypic changes and drug effects. To identify other aspects of well-known chemicals, we screened 258 compounds with the cell painting assay and focused on a mitochondrial punctate phenotype seen with disulfiram. To elucidate the reason for this punctate phenotype, we looked for clues by examining staining steps and gene knockdown as well as examining protein solubility and comparing cell lines.

View Article and Find Full Text PDF

Convergent data, across species, paint a compelling picture of the critical role of the gut and its resident microbiota in several brain functions and disorders. The chemicals mediating communication along these sophisticated highways of the brain-gut-microbiome (BGM) axis include both microbiota metabolites and classical neurotransmitters. Amongst the latter, GABA is fundamental to brain function where it mediates the majority of neuronal inhibition.

View Article and Find Full Text PDF

Human RAD52 is a prime target for synthetical lethality approaches to treat cancers with deficiency in homologous recombination. Among multiple cellular roles of RAD52, its functions in homologous recombination repair and protection of stalled replication forks appear to substitute those of the tumor suppressor protein BRCA2. However, the mechanistic details of how RAD52 can substitute BRCA2 functions are only beginning to emerge.

View Article and Find Full Text PDF

AI-based classification of anticancer drugs reveals nucleolar condensation as a predictor of immunogenicity.

Mol Cancer

December 2024

Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France.

Background: Immunogenic cell death (ICD) inducers are often identified in phenotypic screening campaigns by the release or surface exposure of various danger-associated molecular patterns (DAMPs) from malignant cells. This study aimed to streamline the identification of ICD inducers by leveraging cellular morphological correlates of ICD, specifically the condensation of nucleoli (CON).

Methods: We applied artificial intelligence (AI)-based imaging analyses to Cell Paint-stained cells exposed to drug libraries, identifying CON as a marker for ICD.

View Article and Find Full Text PDF

The art of dermatopathology.

Clin Dermatol

December 2024

Department of Dermatology, Yale School of Medicine, New Haven, CT; Department of Pathology, Yale School of Medicine, New Haven, CT.

Dermatopathology, like dermatology, has evolved in many directions; yet, both fields remain true to visual morphology-based diagnosis. Dr. Irwin Braverman is a role model for the intersection of these two visual fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!