AI Article Synopsis

  • Researchers developed a bio-based flame-retardant macromolecule (MFR) using vanillin and other components to enhance epoxy resins (EP) for electronics.
  • The modified epoxy resin with 15% MFR demonstrated excellent flame resistance (UL-94 V-0 rating) and reduced heat release rates, which improves safety in applications.
  • Additionally, the EP/MFR composite showed increased tensile strength and toughness, along with ultraviolet shielding and a low dielectric constant while maintaining transparency.

Article Abstract

Flame-retardant epoxy resins with tough, transparent, ultraviolet shielding, and low dielectric properties have fascinating prospects in electronic and electrical applications, but it is still challenging at present. In this work, a bio-based macromolecule was synthesized from vanillin (a lignin derivative), phenyl dichlorophosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO), and poly(propylene glycol) bis(2-aminopropyl ether). The bio-based macromolecule, namely, MFR, was designed and added to the epoxy resin (EP). The cured EP containing 15 wt% MFR (i.e., EP/MFR15) exhibits excellent flame retardancy with an Underwriter Laboratory 94 (UL-94) V-0 rating and a limiting oxygen index (LOI) of 29.2 %. Furthermore, the peak heat release rate (PHRR) and total heat release rate (THR) are drastically reduced by 59.5 % and 40.7 %, respectively. Meanwhile, EP/MFR15 shows 20.3 % and 43.8 % improvements in tensile strength and toughness, respectively. Moreover, MFR simultaneously endows EP with accessional ultraviolet shielding performance and low dielectric constant without sacrificing transparency. This work provides a promising strategy for fabricating a bio-based macromolecular flame retardant and preparing a high-performance EP composite with versatile properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.134275DOI Listing

Publication Analysis

Top Keywords

ultraviolet shielding
12
epoxy resin
8
transparent ultraviolet
8
low dielectric
8
bio-based macromolecule
8
heat release
8
release rate
8
high-performance epoxy
4
resin flame-retardant
4
flame-retardant transparent
4

Similar Publications

In this study, octenyl succinic acid sodium starch (OSAS) decorated with chitosan (CS) of different molecular weights (50-150 kDa) and concentrations (10-30 mg/mL) was used to stabilize an emulsion coencapsulating with vitamin A (V) and vitamin D (V). The effect of CS decoration on the thermal and UV stability of the emulsion, as well as the underlying mechanism, was elucidated. The incorporation of CS increased the retention rates of V and V by 11.

View Article and Find Full Text PDF

With the increasing demand for improved food preservation, conventional waterproof food packaging has proven inadequate because of its limited functionality. Although incorporating features such as antibacterial and antioxidant properties into packaging enhances protection, it can compromise the hydrophobicity of the involved material, thereby increasing the risk of contamination from external sources. To address this challenge, a robust and reliable barrier capable of simultaneously integrating multiple protective functions is required.

View Article and Find Full Text PDF

With increasing global environmental awareness and concerns about food safety, biodegradable active packaging has garnered widespread attention. In this study, the stability and bioactivity of tea polyphenol (TP) were enhanced through the preparation of TP-ferric nanoparticles (TP-Fe NPs) using metal-polyphenol ion coordination. Moreover, the introduction of Fe ions can further enhance the antibacterial effects of TP-Fe NPs.

View Article and Find Full Text PDF

Ultraviolet-Shielded Transparent Wood with Improved Interface for Insulating Windows.

ACS Appl Mater Interfaces

January 2025

MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.

Recently, transparent wood (TW) has been considered for many energy-efficient building products, such as windows and decorations. However, the existing TW still faces issues with size and thickness, as well as problems with functional fillers affecting the optical and mechanical properties of TW, which limits its wide application in the window products. In this study, a wood composite material (WCM) with good optical, mechanical, and thermal insulation and UV-shielding properties was prepared by using delignified wood (DW), methyl methacrylate (MMA), and 4-vinylphenylboric acid (VPBA).

View Article and Find Full Text PDF

Dynamic Covalent Sulfur-Selenium Rich Polymers via Inverse Vulcanization for High Refractive Index, High Transmittance, and UV Shielding Materials.

Macromol Rapid Commun

January 2025

College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.

Recent advancements in inverse vulcanization have led to the development of sulfur-rich polymers with diverse applications. However, progress is constrained by the harsh high-temperature reaction conditions, limited applicability, and the generation of hazardous HS gas. This study presents an induced IV method utilizing selenium octanoic acid, yielding sulfur-selenium rich polymers with full atom economy, even at a low-temperatures of 100-120 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!