Structural analysis and shape-based identification of novel inhibitors targeting the Trypanosoma cruzi proteasome.

Int J Biol Macromol

Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.

Published: October 2024

There is an urgent need to develop new, safer, and more effective drugs against Chagas disease (CD) as well as related kinetoplastid diseases. Targeting and inhibiting the Trypanosoma cruzi proteasome has emerged as a promising therapeutic approach in this context. To expand the chemical space for this class of inhibitors, we performed virtual screening campaigns with emphasis on shape-based similarity and ADMET prioritization. We describe the ideation and application of robustly validated shape queries for these campaigns, which furnished 44 compounds for biological evaluation. Five hit compounds demonstrated in vitro antitrypanosomal activity by potential inhibition of T. cruzi proteasome and notable chemical diversities, particularly, LCQFTC11. Structural insights were achieved by homology modeling, sequence/structure alignment, proteasome-species comparison, docking, molecular dynamics, and MMGBSA binding affinity estimations. These methods confirmed key interactions as well as the stability of LCQFTC11 at the β4/β5 subunits' binding site of the T. cruzi proteasome, consistent with known inhibitors. Our results warrant future assay confirmation of our hit as a T. cruzi proteasome inhibitor. Importantly, we also shed light into dynamic details for a proteasome inhibition mechanism that shall be further investigated. We expect to contribute to the development of viable CD drug candidates through such a relevant approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.134290DOI Listing

Publication Analysis

Top Keywords

cruzi proteasome
20
trypanosoma cruzi
8
proteasome
6
cruzi
5
structural analysis
4
analysis shape-based
4
shape-based identification
4
identification novel
4
novel inhibitors
4
inhibitors targeting
4

Similar Publications

The proteasome is considered an excellent drug target for many infectious diseases as well as cancer. Challenges with robust and safe supply of proteasomes from infectious agents, lack of structural information, and complex pharmacology due to multiple active sites have hampered progress in the infectious disease space. We recombinantly expressed the proteasome of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, and demonstrate pharmacological equivalence to the native T.

View Article and Find Full Text PDF

Structural analysis and shape-based identification of novel inhibitors targeting the Trypanosoma cruzi proteasome.

Int J Biol Macromol

October 2024

Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.

There is an urgent need to develop new, safer, and more effective drugs against Chagas disease (CD) as well as related kinetoplastid diseases. Targeting and inhibiting the Trypanosoma cruzi proteasome has emerged as a promising therapeutic approach in this context. To expand the chemical space for this class of inhibitors, we performed virtual screening campaigns with emphasis on shape-based similarity and ADMET prioritization.

View Article and Find Full Text PDF

Global profiling of protein S-palmitoylation in the second-generation merozoites of Eimeria tenella.

Parasitol Res

April 2024

State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.

The intracellular protozoan Eimeria tenella is responsible for avian coccidiosis which is characterized by host intestinal damage. During developmental cycle, E. tenella undergoes versatile transitional stages such as oocyst, sporozoites, merozoites, and gametocytes.

View Article and Find Full Text PDF

Molecular targets for Chagas disease: validation, challenges and lead compounds for widely exploited targets.

Expert Opin Ther Targets

October 2023

Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.

Introduction: Chagas disease (CD) imposes social and economic burdens, yet the available treatments have limited efficacy in the disease's chronic phase and cause serious adverse effects. To address this challenge, target-based approaches are a possible strategy to develop new, safe, and active treatments for both phases of the disease.

Areas Covered: This review delves into target-based approaches applied to CD drug discovery, emphasizing the studies from the last five years.

View Article and Find Full Text PDF

There is an urgent need for new treatments for Chagas disease, a parasitic infection which mostly impacts South and Central America. We previously reported on the discovery of GSK3494245/DDD01305143, a preclinical candidate for visceral leishmaniasis which acted through inhibition of the proteasome. A related analogue, active against , showed suboptimal efficacy in an animal model of Chagas disease, so alternative proteasome inhibitors were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!