Tetracyclines (TCs) are the most common antibiotics in agricultural soil, due to their widespread usage and strong persistence. Biotic and abiotic degradation of TCs may generate toxic transformation products (TPs), further threatening soil ecological safety. Despite the increasing attention on the environmental behavior of TCs, a systematic review on the dissipation of TCs, evolution of TPs, and structure-toxicity relationship of TCs in agricultural soil remains lacking. This review aimed to provide a comprehensive overview of the environmental fate of TCs in agricultural soil. We first introduced the development history and structural features of different generations of TCs. Then, we comparatively evaluated the dissipation kinetics, transportation pathways, and ecological impacts of three representative TCs, namely tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC), in agricultural soil. The results showed that the dissipation kinetics of TCs generally followed the first-order kinetic model, with the median dissipation half-lives ranging from 20.0 to 38.8 days. Among the three TCs, OTC displayed the lowest dissipation rates due to its structural stability. The typical degradation pathways of TCs in soil included epimerization/isomerization, demethylation, and dehydration. Isomerization and dehydration reactions may lead to the formation of more toxic TPs, while demethylation was accompanied by the alteration of the minimal pharmacophore of TCs thus potentially reducing the toxicity. Toxicological experiments are urgently needed in future to comprehensively evaluate the ecological risks of TCs in agricultural soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175126 | DOI Listing |
Nat Food
January 2025
Plant Sciences, Gembloux Agro-Bio Tech, Liege University, Gembloux, Belgium.
Tibetan barley (Hordeum vulgare) accounts for over 70% of the total food production in the Tibetan Plateau. However, continuous cropping of Tibetan barley causes soil degradation, reduces soil quality and causes yield decline. Here we explore the benefits of crop rotation with wheat and rape to improve crop yield and soil quality.
View Article and Find Full Text PDFNat Food
January 2025
College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
Sci Rep
January 2025
College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, 311 East Nongda Rd, Urumqi, 830052, China.
Water conveyance channels in cold and arid regions pass through several saline-alkali soil areas. Canal water leakage exacerbates the salt expansion traits of such soil, damaging canal slope lining structures. To investigate the mechanical properties of saline clay, this study conducted indoor tests, including direct shear, compression, and permeation tests, and scanning electron microscopy (SEM) analysis of soil samples from typical sites.
View Article and Find Full Text PDFSci Rep
January 2025
School of Environmental Health, Institute of Public Health, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
The objective of this study is to enhance the capacity of struvite-phosphate forming reactor utilized in the production of phosphorus fertilizer from wastewater collected from mobile toilets, characterized by phosphorus (P) concentrations of 5.0 ± 1.1 g/l.
View Article and Find Full Text PDFSci Rep
January 2025
Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!