A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Antimony trioxide nanoparticles promote ferroptosis in developing zebrafish (Danio rerio) by disrupting iron homeostasis. | LitMetric

Antimony trioxide nanoparticles promote ferroptosis in developing zebrafish (Danio rerio) by disrupting iron homeostasis.

Sci Total Environ

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.

Published: November 2024

The widespread use of antimony trioxide (ATO) and ATO nanoparticles (nATO) has led to increasing ecological and health risks. However, there is relatively insufficient research on the aquatic ecotoxicology of nATO. This study revealed that nATO affects the development of zebrafish embryos and mainly induces ferroptosis through the dissolution of Sb(III). The size of nATO ranged from 50 to 250 nm, and it generated free radicals in water. It can be ingested and accumulate in zebrafish larvae and affects normal development. Compared with those in the control group, the levels of reactive oxygen species (ROS), cell apoptosis, mitochondrial damage and iron content in the group exposed to high concentrations of nATO were increased. The transcriptomics results indicated that nATO significantly altered the expression levels of key genes related to glutathione metabolism and ferroptosis. Quantitative polymerase chain reaction consistently demonstrated the reliability of the transcriptome data and revealed that nATO induced ferroptosis by disrupting iron homeostasis and the key factor is the dissolution of Sb(III). Furthermore, ferrostatin-1, an inhibitor of ferroptosis, decreased the levels of ROS, apoptosis and mitochondrial damage induced by nATO, which further prove that nATO can promote ferroptosis. This work deepens the understanding of the ecological toxicological effects of nATO in aquatic environments and its mechanisms, which is highly important for the development of antimony management strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.175140DOI Listing

Publication Analysis

Top Keywords

nato
10
antimony trioxide
8
promote ferroptosis
8
disrupting iron
8
iron homeostasis
8
revealed nato
8
dissolution sbiii
8
apoptosis mitochondrial
8
mitochondrial damage
8
ferroptosis
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!