Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Salinization is a global problem affecting agricultural productivity and sustainability. The application of exogenous microbial fertilizer harbors great potential for improving saline-alkali soil conditions and increasing land productivity. Yet the responses to microbial fertilizer application rate in terms of rhizosphere soil biochemical characteristics, soil microbial community, and crop yield and their interrelationships and underlying mechanisms are still unclear. Here, we studied changes to rhizosphere soil-related variables, soil enzyme activity (catalase, sucrase, urease), microbial community diversity, and sweet sorghum (Sorghum bicolor (L.) Moench) yield under four fertilization concentration levels (0, 0.12, 0.24, and 0.36 kg m) in a saline-alkali ecosystem (Shandong, China). Our results showed that the best improvement effect on soil when the microbial fertilizer was applied at a rate of 0.24 kg m. Compared with the control (sweet sorghum + no fertilizer), it significantly increased soil organic carbon (21.50 %), available phosphorus (26.14 %), available potassium (36.30 %), and soil urease (38.46 %), while significantly reducing soil pH (2.21 %) and EC (12.04 %). Meanwhile, the yield of sweet sorghum was increased by 24.19 %. This is mainly because microbial fertilizers enhanced the diversity and the network complexity of bacterial and fungal communities, and influenced catalase (CAT), urease (UE), and sucrase (SC), thereby facilitating nutrient release in the soil, enhancing soil fertility, and indirectly influencing sweet sorghum productivity. Among them, Gemmatimonadota and Verrucomicrobiota may be the key microbial factors affecting sweet sorghum yield, while available potassium, soil urease and available phosphorus are the main soil factors. These findings provide valuable theoretical insights for preserving the health of coastal saline-alkali soils and meeting the agricultural demand for increased yield per unit of land area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175127 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!