The prevalent presence of pharmaceuticals in aquatic ecosystems underscores the necessity for developing cost-effective techniques to remove them from water. The utilization of affordable precursors in producing activated carbon, capable of rivaling commercial alternatives, remains a persistent challenge. The adsorption of diclofenac and ciprofloxacin onto a novel pinewood-derived activated carbon (FPWAC) was explored, employing a sequential activation process involving ammonium nitrate (NHNO) treatment followed by sodium hydroxide (NaOH) activation. The produced FPWAC was then thoroughly characterized by employing several techniques. The removal of diclofenac and ciprofloxacin in water and real wastewater effluent was examined in batch tests. The optimum removal conditions were an FPWAC dosage of 1 g L, pH 6, mixture concentration of 25 mg L, and a temperature of 25 °C. The FPWAC was able to remove both pharmaceuticals for up to six cycles, with more than 95% removal for water and 90% for wastewater in the first cycle. The adsorption performance fitted well with the non-linear Freundlich isotherm for both pollutants. The kinetics of adsorption of diclofenac followed a pseudo-first-order model, while ciprofloxacin showed adherence to the pseudo-second-order model. FPWAC proved its potency as a low-cost adsorbent for pharmaceutical removal from wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142974 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK.
This research presents a straightforward and economically efficient design for a microbial fuel cell (MFC) that can be conveniently integrated into a borehole to monitor natural attenuation in groundwater. The design employs conventional, transparent, and reusable PVC bailers with graphite tape and granular activated carbon to create high surface area electrodes. These electrodes are connected across redox environments in nested boreholes through a wire and variable resistor setup.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Savannah River National Laboratory, Aiken, SC, USA.
Liquid low-level radioactive waste at the Savannah River Site contains several species of mercury, including inorganic, elemental, and methylmercury. This waste is solidified and stabilized in a cementitious waste form referred to as saltstone. Soluble mercury is stabilized as β-cinnabar, HgS as the result of reaction between the mercury and sulfur present in blast furnace slag, one of the cementitious reagents.
View Article and Find Full Text PDFTalanta
December 2024
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India. Electronic address:
The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China. Electronic address:
A mounting number of studies have been documenting strong pro-inflammatory and pro-fibrotic effects of carbon nanotube (CNT). However, the molecular mechanisms of single-walled CNT (SWCNT)-provoked lung injury remain to be elucidated. Here, we established a mice model of SWCNT-induced lung injury by intratracheal instillation and found that C5a-C5a receptor-1 (C5aR1) signaling was significantly activated along with abundant neutrophils recruitment in lungs at early phase post SWCNT administration, which were positively correlated with early lung inflammation and late pulmonary fibrosis.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!