A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo ultrasound localization microscopy for high-density microbubbles. | LitMetric

In vivo ultrasound localization microscopy for high-density microbubbles.

Ultrasonics

Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; Academy for Engineering and Technology, Fudan University, Shanghai 200438, China. Electronic address:

Published: September 2024

Ultrasound Localization Microscopy (ULM) surpasses the constraints imposed by acoustic diffraction, achieving sub-wavelength resolution visualization of microvasculature through the precise localization of minute microbubbles (MBs). Nonetheless, the analysis of densely populated regions with overlapping MB point spread responses introduces significant localization errors, limiting the use of technique to low-concentration conditions. This raises a trade-off issue between localization efficiency and MB density. In this work, we present a new deep learning framework that combines Transformer and U-Net architectures, termed ULM-TransUNet. As a non-linear model, it is able to learn the complex data patterns of overlapping MBs in dense conditions for accurate localization. To evaluate the performance of ULM-TransUNet, a series of numerical simulations and in vivo experiments are carried out. Numerical simulation results indicate that ULM-TransUNet achieves high-quality ULM imaging, with improvements of 21.93 % in detection rate, 17.36 % in detection precision, and 20.53 % in detection sensitivity, compared to previous state-of-the-art deep learning (DL) method (e.g., ULM-UNet). For the in vivo experiments, ULM-TransUNet achieves the highest spatial resolution (9.4 μm) and rapid inference speed (26.04 ms/frame). Furthermore, it consistently detects more small vessels and resolves closely spaced vessels more effectively. The outcomes of this work imply that ULM-TransUNet can potentially enhance the microvascular imaging performance on high-density MB conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2024.107410DOI Listing

Publication Analysis

Top Keywords

ultrasound localization
8
localization microscopy
8
deep learning
8
vivo experiments
8
ulm-transunet achieves
8
localization
6
ulm-transunet
5
vivo ultrasound
4
microscopy high-density
4
high-density microbubbles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!