Adsorption of DNA fluorescent probes on GO-FeO is a promising strategy for establishing fluorescent bioassays, often using magnetic separation or fluorescence quenching to generate signals. However, there is a lack of systematic understanding of ssDNA-regulated changes in the enzyme-mimetic activity of GO-FeO, and the accuracy of the results of single-mode fluorescence analysis is susceptible to environmental interference. These limit the rational design and scope of application of the methods. Herein, the force and the catalytic mechanism of ssDNA/GO-FeO interactions were explored in detail. On this basis, a ratiometric fluorescence/colorimetric dual-modal analysis platform was constructed based on the superparamagnetism and DNA controllable peroxidase-like activity of GO-FeO. The ratiometric fluorescent signal was generated by combining 7-amino-4-methyl-3-coumarinylacetic acid (AMCA) labeled aptamer (AMCA-aptamer) with AT hairpin-synthesized copper nanoparticles, which has built-in correction and resistance to environmental interference. The aptamer-modulated peroxidase-like activity of GO-FeO generated the colorimetric signal. Two signals correct each other to further enhance the reliability of the results. The analytical platform performed satisfactorily for AFB1 detection in the range of 0.1-150 μg/L, and was successfully applied to real samples (peanut, milk powder, and wheat flour). With the support of ImageJ software, quantitative detection was achieved by RGB channel analysis for real-color images, which provides a potential pathway for the rapid detection of food safety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2024.116594 | DOI Listing |
Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.
View Article and Find Full Text PDFBackground: Pycnanthus angolensis (Welw) Warb., Myristicaceae, is used extensively in ethnomedicine. Numerous health benefits have being ascribed to the use of different parts of P.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) agitation is a distressing neuropsychiatric symptom characterized by excessive motor activity, verbal aggression, or physical aggression. Agitation is one of the causes of caregiver distress, increased morbidity and mortality, and early institutionalization in patients with AD. Current medications used for the management of agitation have modest efficacy and have substantial side effects.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFBackground: CT1812 is an experimental therapeutic sigma-2 receptor modulator in development for Alzheimer's disease (AD) and dementia with Lewy bodies. CT1812 reduces the affinity of Aβ oligomers to bind to neurons and exert synaptotoxic effects. This phase 2, multi-center, international, randomized, double-blind, placebo-controlled trial assessed safety, tolerability and effects of CT1812 on cognitive function in individuals with AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!