A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PTPN22 through the regulation of Th17/Treg balance acts as a potential target for the treatment of Graves' disease. | LitMetric

Graves' disease (GD) is an autoimmune disease and the most common cause of hyperthyroidism. While the phosphotyrosine phosphatase non-receptor type 22 (PTPN22) variant is associated with GD susceptibility, its precise role and mechanism in GD remain unclear. To investigate this, we induced GD in mice using Ad-TSHR289 and isolated CD4+ T cells from spleen tissues. We conducted a series of experiments, including hematoxylin-eosin staining, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, flow cytometry, immunofluorescence (IF), reverse transcription quantitative PCR (RT-qPCR), and western blotting. PTPN22 expression was found to be downregulated in GD mice. Overexpression of PTPN22 ameliorated pathological damage and increased serum levels of T4 and thyroid stimulating hormone receptor antibody (TRAb), as well as the ratio of thyroid weight to body weight in GD mice. Furthermore, GD mice exhibited elevated levels of CD4+ and IL-17+ T cells, an increased Th17/Treg ratio, and upregulation of IL-17A mRNA expression. Conversely, there was a decrease in Foxp3+ T cells and transcriptional levels of Foxp3, which were reversed by PTPN22 overexpression. In vitro experiments showed that PTPN22 overexpression in CD4+ T cells from spleen tissues of GD mice enhanced Foxp3 expression while reducing IL-17A expression. Mechanistically, PTPN22 overexpression led to decreased levels of phosphorylated Lck (p-Lck), Lck, phosphorylated Fyn (p-Fyn), Fyn, phosphorylated Zap70 (p-Zap70), and Zap70 in both in vivo and in vitro GD models. In summary, PTPN22 can alleviate thyroid dysfunction in GD by modulating Th17/Treg balance through the downregulation of the Lck/Zap70 signaling axis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tice.2024.102502DOI Listing

Publication Analysis

Top Keywords

ptpn22 overexpression
12
ptpn22
8
th17/treg balance
8
graves' disease
8
cd4+ cells
8
cells spleen
8
spleen tissues
8
mice
5
ptpn22 regulation
4
regulation th17/treg
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!