AI Article Synopsis

  • * This study explores reactions between salicylic aldehydes and a specific monoterpene derivative, resulting in various chiral polycyclic products, with some being novel ring structures.
  • * The results indicate that the type of acid catalyst used and the reaction conditions significantly influence the product outcomes, and the study includes detailed mechanistic insights supported by experimental and computational methods.

Article Abstract

Chiral oxygen-containing heterocyclic compounds are of great interest for the development of pharmaceuticals. Monoterpenes and their derivatives are naturally abundant precursors of novel synthetic chiral oxygen-containing heterocyclic compounds. In this study, acid catalyzed reactions of salicylic aldehydes with (-)-8-acetoxy-6-hydroxymethyllimonene, readily accessible from α-pinene, leads to the formation of chiral polycyclic products of various structural types. Three of the six isolated chiral heterocyclic products obtained from salicylic aldehyde contain previously unknown polycyclic ring types. Having carried out the reaction in the presence of Brønsted or Lewis acids (Amberlyst 15, trifluoromethanesulfonic acid, trifluoroacetic acid and boron trifluoride etherate) or aluminosilicates (montmorillonite K10, halloysite nanotubes), we found that the nature of products depends on the catalyst as well as the reaction conditions (reaction time, reactant ratio, presence or absence of solvent). Detailed mechanistic insight on the complex cascade reactions for product formation is provided with extensive experimental and quantum mechanical computational studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.4c01282DOI Listing

Publication Analysis

Top Keywords

cascade reactions
8
salicylic aldehydes
8
chiral oxygen-containing
8
oxygen-containing heterocyclic
8
heterocyclic compounds
8
unusual cascade
4
reactions 8-acetoxy-6-hydroxymethyllimonene
4
8-acetoxy-6-hydroxymethyllimonene salicylic
4
aldehydes diverse
4
diverse oxygen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!