Dengue viruses (DENVs), like all viruses, evolve to perpetuate transmission of their species in their hosts. However, how DENV genetics influences dengue disease outbreaks remains poorly understood. Here, we examined isolates of the South Pacific dengue virus type 2 (DENV-2) that emerged in the 1970s and caused major dengue outbreaks in islands in this region until it reached Tonga, where only a few mild cases were reported. Phylogenetically, the DENV-2 strain isolated in Tonga segregated into a clade different from those clades infecting populations in other South Pacific islands. We found that this epidemiological observation could be explained by a single histidine-to-arginine substitution in position 86 of the premembrane (prM) protein of the Tonga DENV-2 strain. This mutation attenuated viral protein translation in mammalian cells but not in midgut cells of the mosquito vector . In mammalian cells, the prM mutation resulted in reduced translation of the viral genome and subsequent reduced virus replication. In contrast, in mosquito midgut cells, the prM mutation conferred a selective infection advantage, possibly because of the positively charged arginine residue introduced by the mutation. These findings provide molecular insights into the year-long silent transmission of attenuated DENV-2 in Tonga during the 1970s dengue outbreak in the South Pacific.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scitranslmed.adk4769 | DOI Listing |
Nat Commun
November 2024
Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China.
Tick-borne encephalitis virus (TBEV) represents a pivotal tick-transmitted flavivirus responsible for severe neurological consequences in Europe and Asia. The emergence of TBEV genetic mutations and vaccine-breakthrough infections, along with the absence of effective vaccines and specific drugs for other tick-borne flaviviruses associated with severe encephalitis or hemorrhagic fever, underscores the urgent need for progress in understanding the pathogenesis and intervention strategies for TBEV and related flaviviruses. Here we elucidate cellular alterations in the proteome, phosphoproteome, and acetylproteome upon TBEV infection.
View Article and Find Full Text PDFProteomics Clin Appl
January 2025
Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia, China.
Objective: To investigate the potential effects of BvfA in reproductive system damage caused by Brucella.
Methods: Brucella intracellular multiplication ability was determined by a gentamicin protection assay; the LDH method was used to determine the lethal effect of Brucella on TM4 cells. Afterward, Label-free proteomics and LC-MS/MS metabolomics assays were combined to reveal differential abundant proteins and metabolites of TM4 cells infected with bvfA-deletion strains and parental strains.
J Virol
November 2024
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
Unlabelled: Zika virus (ZIKV) remains a significant public health threat worldwide. A number of adaptive mutations have accumulated within the genome of ZIKV during global transmission, some of which have been linked to specific phenotypes. ZIKV maintains an alternating cycle of replication between mosquitoes and vertebrate hosts, but the role of mosquito-specific adaptive mutations in ZIKV has not been well investigated.
View Article and Find Full Text PDFBMC Pulm Med
October 2024
Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
Mol Cell Proteomics
September 2024
Division of Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany; Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany. Electronic address:
Personalized cancer immunotherapies such as therapeutic vaccines and adoptive transfer of T cell receptor-transgenic T cells rely on the presentation of tumor-specific peptides by human leukocyte antigen class I molecules to cytotoxic T cells. Such neoepitopes can for example arise from somatic mutations and their identification is crucial for the rational design of new therapeutic interventions. Liquid chromatography mass spectrometry (LC-MS)-based immunopeptidomics is the only method to directly prove actual peptide presentation and we have developed a parameter optimization workflow to tune targeted assays for maximum detection sensitivity on a per peptide basis, termed optiPRM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!