AI Article Synopsis

  • PAMAM dendrimers, particularly the generation 4 (G4) version with a fully amine surface, are highly toxic to cells, prompting researchers to modify them for better biocompatibility by introducing neutral hydroxyl groups.
  • The modified G4-90/10 dendrimers, with a surface changing to 10% amine and 90% hydroxyl, show less toxicity and effective cellular uptake in various cell types, including neurons and stem cells.
  • Studies demonstrate that these dendrimers migrate within the brain after injection, with the G4 variety exhibiting more extensive movement patterns compared to G1 dendrimers, particularly in the anterior, posterior, and lateral directions, along with unique projections to cortical areas.

Article Abstract

Polyamidoamine (PAMAM) dendrimers are nanoparticles that have a wide scope in the field of biomedicine. Previous evidence shows that the generation 4 (G4) dendrimers with a 100% amine surface (G4-NH) are highly toxic to cells and due to their positively charged amine groups. To reduce the toxicity, we modified the surface of the dendrimers to have more neutral functional groups, with 10% of the surface covered with -NH and 90% of the surface covered with hydroxyl groups (-OH; G4-90/10). Our previous data show that these modified dendrimers are taken up by cells, neurons, and different types of stem cells and neurons and glial cells . The toxicity assay shows that these modified dendrimers are less toxic compared with G4-NH2 dendrimers. Moreover, prolonged dendrimer exposure (G1-90/10 and G4-90/10), up to 3 weeks following unilateral intrastriatal injections into the striatum of mice, showed that dendrimers have the tendency to migrate within the brain via corpus callosum at different rates depending on their size. We also found that there is a difference in migration between the G1 and G4 dendrimers based on their size differences. The G4 dendrimers migrate in the anterior and posterior directions as well as more laterally from the site of injection in the striatum compared to the G1 dendrimers. Moreover, the G4 dendrimers have unique projections from the site of injection to the cortical areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331434PMC
http://dx.doi.org/10.1021/acsami.4c09137DOI Listing

Publication Analysis

Top Keywords

dendrimers
12
pamam dendrimers
8
surface covered
8
modified dendrimers
8
cells neurons
8
site injection
8
unilateral administration
4
administration surface-modified
4
surface-modified pamam
4
dendrimers healthy
4

Similar Publications

Background: Cognitive decline associated with Alzheimer's disease (AD) correlates with hyperphosphorylated tau (pTau) propagating between neurons along networks connected by synapses. It has been hypothesized this transcellular transmission occurs partially by extracellular vesicles (EVs). Both genetic and pharmacological inhibition of nSMase2 has been found to inhibit EV biogenesis and pTau propagation.

View Article and Find Full Text PDF

The development of narrowband emissive, bright, and stable solution-processed organic light-emitting diodes (SP-OLEDs) remains a challenge. Here, a strategy is presented that merges within a single emitter a TADF sensitizer responsible for exciton harvesting and an MR-TADF motif that provides bright and narrowband emission. This emitter design also shows strong resistance to aggregate formation and aggregation-cause quenching.

View Article and Find Full Text PDF

Hydration and Biodistribution of Zwitterionic Dendrimers Conjugating a Sulfobetaine Monomer and Polymers.

Langmuir

January 2025

Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.

Zwitterionic polymers exhibit strong hydration, high biocompatibility, and antifouling properties. Dendrimers are regularly branched polymers, which are used in the drug delivery system (DDS). In this study, we synthesized zwitterionic monomer- and polymer-conjugated dendrimers as a biocompatible nanoparticle to investigate the relation between the hydration property and biodistribution.

View Article and Find Full Text PDF

Probing Macromolecular Conformation in Restricted Geometry by PEF: Application to Hydrophobically Modified PAMAM Dendrimers Isolated Inside Surfactant Micelles.

J Phys Chem B

January 2025

Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

The conformation of a series of zero-generation polyamidoamine dendrimers end-labeled with four 1-pyrene-butyroyl, -hexanoyl, -octanoyl, -decanoyl, and -dodecanoyl derivatives, referred to as the PyCX-PAMAM-G0 samples with = 4, 6, 8, 10, and 12, respectively, was characterized in ,-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and aqueous solutions of 50 mM sodium dodecyl sulfate (SDS) or 50 mM dodecyltrimethylammonium bromide (DTAB). The conformation of the PyCX-PAMAM-G0 samples was determined from the global model-free analysis (MFA) of the fluorescence decays, which yielded the average rate constant (⟨⟩) for pyrene excimer formation (PEF) between an excited and a ground-state pyrenyl labels, with ⟨⟩ being proportional to the local concentration ([Py]) of the pyrenyl labels within the macromolecular volume; ⟨⟩-vs-[Py] plots yielded straight lines passing through the origin in DMF and DMSO, demonstrating that the internal segments of the dendrimers obeyed Gaussian statistics in these two solvents. In aqueous surfactant solutions, the hydrophobic pyrenyl labels induced the interactions of the PyCX-PAMAM-G0 dendrimers with the SDS and DTAB micelles.

View Article and Find Full Text PDF

As the main pioneer in the field of dendrimers, a term that he coined in 1985 in reference to their tree-like structure, Prof. Donald A. Tomalia has inspired several generations of researchers worldwide [.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!