Automated particle analysis (APA) provides a vast amount of compositional data via energy-dispersive X-ray spectroscopy along with size and shape data via scanning electron microscopy for individual particles in a sample. In many instances, APA data are leveraged to support identification of the source of a sample based on the detection of particles of a specific composition. Often, the particles that provide context make up a minuscule portion of the sample. Additionally, the interpretation of complex samples can be difficult due to the diversity of compositions both in the mixture and within a particle. In this work, we demonstrate a method to compute and cluster similarity graphs that describe inter-particle relationships within a sample using a multi-modal few-shot learning neural network. As a proof-of-concept, we show that samples known to have been exposed to gunshot residue can be distinguished from samples occasionally mistaken for gunshot residue. Our workflow builds upon standard APA techniques and data processing methods to unveil additional information in a readily interpretable and quantitatively comparable format.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/mam/ozae068 | DOI Listing |
J Struct Biol
January 2025
School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel.
The process of particle picking, a crucial step in cryo-electron microscopy (cryo-EM) image analysis, often encounters challenges due to outliers, leading to inaccuracies in downstream processing. In response to this challenge, this research introduces an additional automated step to reduce the number of outliers identified by the particle picker. The proposed method enhances both the accuracy and efficiency of particle picking, thereby reducing the overall running time and the necessity for expert intervention in the process.
View Article and Find Full Text PDFClin Chem Lab Med
January 2025
Department of Nephrology, Ghent University Hospital Ghent, Belgium.
Objectives: We evaluated the performance of a novel flow cell morphology analyzer AUTION EYE AI-4510 for counting particles in urine.
Methods: Analytical performance was assessed according to the EFLM European Urinalysis Guideline 2023. Trueness was compared by analyzing 1.
Soft Matter
January 2025
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, Dresden, 01069, Germany.
Field-induced microstructure evolution can play an important role in defining the coupled magneto-mechanical response of Magneto-Active Elastomers (MAEs). The behavior of these materials is classically modeled using mechanical, magnetic and coupled magneto-mechanical contributions to their free energy function. If the MAE sample is fully clamped so it cannot deform, the mechanical coupling is reduced to the internal microscopic deformations caused by the particles moving and deforming the elastic medium that surrounds them.
View Article and Find Full Text PDFMed Phys
January 2025
OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.
Background: Patient-specific quality assurance (PSQA) is a crucial yet resource-intensive task in proton therapy, requiring special equipment, expertise and additional beam time. Machine delivery log files contain information about energy, position and monitor units (MU) of all delivered spots, allowing a reconstruction of the applied dose. This raises the prospect of phantomless, log file-based QA (LFQA) as an automated replacement of current phantom-based solutions, provided that such an approach guarantees a comparable level of safety.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
Mitochondrial transplantation (MTx) offers a promising therapeutic approach to mitigate mitochondrial dysfunction in conditions such as ischemia-reperfusion (IR) injury. The quality and viability of donor mitochondria are critical to MTx success, necessitating the optimization of isolation protocols. This study aimed to assess a rapid mitochondrial isolation method, examine the relationship between mitochondrial size and membrane potential, and evaluate the potential benefits of Poloxamer 188 (P-188) in improving mitochondrial quality during the isolation process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!