While large margin classifiers are originally an outcome of an optimization framework, support vectors (SVs) can be obtained from geometric approaches. This article presents advances in the use of Gabriel graphs (GGs) in binary and mul-ticlass classification problems. For Chipclass, a hyperparameter-less and optimization-less GG-based binary classifier, we discuss how activation functions and support edge (SE)-centered neurons affect the classification, proposing smoother functions and structural SV (SSV)-centered neurons to achieve margins with low probabilities and smoother classification contours We extend the neural network architecture, which can be trained with backpropagation with a softmax function and a cross-entropy loss, or by solving a system of linear equations. A new subgraph-/distance-based membership function for graph regularization is also proposed, along with a new GG recomputation algorithm that is less computationally expensive than the standard approach. Experimental results with the Friedman test show that our method was better than previous GG-based classifiers and statistically equivalent to tree-based models.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2024.3420227DOI Listing

Publication Analysis

Top Keywords

large margin
8
margin classifiers
8
support vectors
8
multiclass graph-based
4
graph-based large
4
classifiers unified
4
unified approach
4
approach support
4
vectors neural
4
neural networks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!