A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual-Gradient Concentration Distribution in Sb-Cu Alloy Nanoarrays for Robust Sodium-Ion Storage. | LitMetric

Alloy-type materials are attractive for anodes in sodium-ion batteries (SIBs) owing to their high theoretical capacities and overall performance. However, the accumulation of stress/strain during repeated cycling results in electrode pulverization, leading to rapid capacity decay and eventual disintegration, thus hindering their practical applications. Herein, we report a 3D coral-like Sb-Cu alloy nanoarray with gradient distribution of both elements. The array features a Sb-rich bottom and a Cu-rich top with increasing Sb and decreasing Cu concentrations from top to bottom. The former is the active component that provides the high capacity, whereas the latter serves as an inert additive that acts against volume variation. The gradual transition in composition within the electrode introduces a ladder-type volume expansion effect, facilitating a smooth distribution and effective release of stress, thereby ensuring the wanted mechanical stability and structural integrity. The as-developed nanoarray affords a high reversible capacity (460 mAh g at 0.5 C), stable cycling (89 % retention over 120 cycles at 1.0 C), and superior rate capability (354 mAh g at 10 C). The concentration dual-gradient strategy paves a new pathway of designing alloy-type materials for SIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202412533DOI Listing

Publication Analysis

Top Keywords

sb-cu alloy
8
alloy-type materials
8
dual-gradient concentration
4
concentration distribution
4
distribution sb-cu
4
alloy nanoarrays
4
nanoarrays robust
4
robust sodium-ion
4
sodium-ion storage
4
storage alloy-type
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!