Multi-Template-Guided Synthesis of High-Dimensional Molecular Assemblies for Humidity Gradient-Based Power Generators.

Angew Chem Int Ed Engl

Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Universities of Jilin Province Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130022, China.

Published: October 2024

Systematically orchestrating fundamental building blocks into intricate high-dimensional molecular assemblies at molecular level is imperative for multifunctionality integration. However, this remains a formidable task in crystal engineering due to the dynamic nature of inorganic building blocks. Herein, we develop a multi-template-guided strategy to control building blocks. The coordination modes of ligands and the spatial hindrance of anionic templates are pivotal in dictating the overall structures. Flexible multi-dentate linkers selectively promote the formation of oligomeric assembly ([TeO(MoOS)O(OH)(COH)] {TeMo}) into tetrahedral cages ([(TeO)(MoOS)(OH)(CHOP)] {TeMo} and [(AsO)(MoOS)(OH)(CHO)] {AsMo}), while steric hindrance from anionic templates further assists in assembling cages into an open quadruply twisted Möbius nanobelt ([(CHOP)(MoOS)(OH)(CHO)] {PMo}). Among these structures, the hydrophilic-hydrophobic hybrid cage {TeMo} emerges as an exemplary molecular model for proton conduction and serves as a prototype for humidity gradient-based power generators (HGPGs). The TeMo-PVDF-based HGPG (PVDF=Poly(vinylidene fluoride)) exhibits notable stability and power generation, yielding an open-circuit voltage of 0.51 V and a current density of 77.8 nA cm at room temperature and 90 % relative humidity (RH). Further insights into the interactions between water molecules and microscale molecules within the generator are achieved through molecular dynamics simulations. This endeavor unveils a universal strategy for synthesizing multifunctional integration molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202408096DOI Listing

Publication Analysis

Top Keywords

building blocks
12
high-dimensional molecular
8
molecular assemblies
8
humidity gradient-based
8
gradient-based power
8
power generators
8
hindrance anionic
8
anionic templates
8
molecular
5
multi-template-guided synthesis
4

Similar Publications

Aim: This study aimed to identify the genes associated with the development of lung adenocarcinoma (LUAD) and potential therapeutic targets.

Methods: Differentially expressed genes (DEGs) were identified by self-transcriptome sequencing of tumor tissues and paracancerous tissues resected during surgery and combined with The Cancer Genome Atlas (TCGA) data to screen for the genes associated with LUAD prognosis. The expression was validated at mRNA and protein levels, and the gene knockdown was used to examine the impact and underlying mechanisms on lung cancer cells.

View Article and Find Full Text PDF

Bacterial biofilms are surface-attached communities consisting of non-replicating persister cells encased within an extracellular matrix of biomolecules. Unlike bacteria that have acquired resistance to antibiotics, persister cells enable biofilms to demonstrate innate tolerance toward all classes of conventional antibiotic therapies. It is estimated that 50-80% of bacterial infections are biofilm associated, which is considered the underlying cause of chronic and recurring infections.

View Article and Find Full Text PDF

Bioinformatics and Computationally Supported Redesign of Aspartase for β-Alanine Synthesis by Acrylic Acid Hydroamination.

ACS Catal

January 2025

Chemical Biotechnology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, the Netherlands.

Aspartate ammonia lyases catalyze the reversible amination of fumarate to l-aspartate. Recent studies demonstrate that the thermostable enzyme from sp. YM55-1 (AspB) can be engineered for the enantioselective production of substituted β-amino acids.

View Article and Find Full Text PDF

RF Heating Effects in CEST NMR with Hyperpolarized 129Xe Considering Different Spin Exchange Kinetics and Saturation Schemes.

Chemphyschem

January 2025

Deutsches Krebsforschungszentrum, Translational Molecular Imaging, Im Neuenheimer Feld 223, 69120, Heidelberg, GERMANY.

Chemical exchange saturation transfer (CEST) improves the sensitivity of NMR but depending on the spin exchange kinetics, it can require substantial RF energy deposition to label magnetization. Potential side effects like RF-induced heating may occur and must be monitored. Here, we explore the parameter space considering not only undesired heating but efficient CEST build-up (depolarization rate), spectral resolution (line width), and subsequent effects like changes in chemical shifts of CEST responses must be considered, too.

View Article and Find Full Text PDF

Constructing an Injectable Multifunctional Antibacterial Hydrogel Adhesive to Seal Complex Interfaces Post-Dental Implantation to Improve Soft Tissue Integration.

Macromol Biosci

January 2025

Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China.

Soft tissue integration (STI) around dental implants determines their long-term success, and the key is to immediately construct a temporary soft tissue-like barrier to prevent bacterial invasion after implantation and then, promote STI. In response to this need, an injectable multi-crosslinked hydrogel (MCH) with abilities of self-healing, anti-swelling, degradability, and dry/wet adhesion to soft tissue/titanium is developed using gallic acid-graft-chitosan, oxidized sodium alginate, gelatin, and Cu with water and borax solution as solvents, whose properties can be controlled by adjusting its composition and ratio. MCH can not only immediately build a sealing barrier to block the bacterial invasion in the oral simulation environment but also deliver outstanding antibacterial efficacy through the synergism of trapping bacteria and releasing bactericidal agents such as chitosan, gallic acid, aldehyde, and Cu.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!