Artificial morphing surfaces, inspired by the high adaptability of biological tissues, have emerged as a significant area of research in recent years. However, the practical applications of these surfaces, constructed from soft materials, are considerably limited due to their low shear stiffness. Rigid-foldable cylinders are anisotropic structures that exhibit high adaptability and shear stiffness. Thus, they have the potential to address this issue. However, changes in shape and area at both ends during folding can lead to collisions or gaps on the morphing surface. Here, a quasi-rigid-foldable (QRF) rate is first introduced to quantify the rigid-foldability of a foldable structure and validate it through experiments. More importantly, a QRF polyhedron is then proposed, which is not only notably anisotropic, similar to a rigid-foldable cylinder, but also exhibits a zero-Poisson's ratio property, making it suitable for arraying as morphing surfaces without any collisions or gaps. Such surfaces have a myriad of applications, including modulating electromagnetic waves, gripping fragile objects, and serving as soles for climbing robots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422804 | PMC |
http://dx.doi.org/10.1002/advs.202402128 | DOI Listing |
Nat Commun
January 2025
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
Inspired by counterintuitive water "swelling" ability of the hydrophobic moss of the genus Sphagnum (Peat moss), we prepared a hydrophobic pseudo-hydrogel (HPH), composed of a pure hydrophobic silicone elastomer with a tailored porous structure. In contrast to conventional hydrogels, HPH achieves absorption-induced volume expansion through surface tension induced elastocapillarity, presenting an unexpected absorption-induced volume expansion capability in hydrophobic matrices. We adopt a theoretical framework elucidating the interplay of surface tension induced elastocapillarity, providing insights into the absorption-induced volume expansion behavior.
View Article and Find Full Text PDFNat Commun
January 2025
Morphing Matter Lab, Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
Compliant mechanisms with reconfigurable degrees of freedom are gaining attention in the development of kinesthetic haptic devices, robotic systems, and mechanical metamaterials. However, available devices exhibit limited programmability and form-customizability, restricting their versatility. To address this gap, we propose a metastructure concept featuring reconfigurable motional freedom and tunable stiffness, adaptable to various form factors and applications.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
In the face of advancements in microrobotics, intelligent control and precision medicine, artificial muscle actuation systems must meet demands for precise control, high stability, environmental adaptability and high integration miniaturization. Carbon materials, being lightweight, strong and highly conductive and flexible, show great potential for artificial muscles. Inspired by the butterfly's proboscis, we have developed a carbon-based artificial muscle, hydrogen-substituted graphdiyne muscle (HsGDY-M), fabricated efficiently using an emerging hydrogen-substituted graphdiyne (HsGDY) film with an asymmetrical surface structure.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Controlled photooxidation-mediated disruption of collagens in the tumor microenvironment can reduce desmoplasia and enhance immune responsiveness. However, achieving effective light delivery to solid tumors, particularly those with dynamic volumetric changes like pancreatic ductal adenocarcinoma (PDAC), remains challenging and limits the repeated and sustained photoactivation of drugs. Here, 3D, shape-morphing, implantable photonic devices (IPDs) are introduced that enable tumor-specific and continuous light irradiation for effective metronomic photodynamic therapy (mPDT).
View Article and Find Full Text PDFSci Rep
December 2024
School of Mining, Liaoning Technical University, Fuxin, 123000, China.
Combining the requirements for refined modeling and dynamic update of fault slope geological models in open-pit coal mines, we systematically elaborated on the elements and rules of slope 3D geological modeling and proposed a fine modeling and dynamic updating method based on digital elevation model (DEM) and half-edge boundary representation (B-Rep) data structures. Initially, the stratigraphic division of the study area is conducted based on borehole and section data, combined with the geological evolution history and the level set theory. Applying inverse distance weighting (IDW) for estimation, the geological interface triangular irregular network (TIN) is constructed using the TIN algorithm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!