Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This comprehensive review explores the intricate relationship between the hypothalamic-pituitary-adrenal (HPA) axis, the hypothalamic-pituitary-gonadal (HPG) axis, and aggression. It provides a detailed overview of the physiology and functioning of these axes, as well as the implications for aggressive behavior. The HPA axis, responsible for the stress response, is activated in response to various stressors and can influence aggressive behavior. Glucocorticoids, such as cortisol, play a crucial role in stress-induced activation of the HPA axis and have been implicated in aggressive tendencies. Chronic stress can dysregulate the HPA axis, leading to alterations in cortisol levels and potentially contributing to aggressive behavior. The HPG axis, particularly the androgen hormone testosterone, is also closely linked to aggression. Animal and human studies have consistently shown a positive association between testosterone levels and aggression. The androgen receptors in the brain's neural circuitry play a critical role in modulating aggressive behavior. Interactions between the HPA and HPG axes further contribute to the regulation of aggression. Feedback mechanisms and crosstalk between these axes provide a complex system for the modulation of both stress and reproductive functions, which can impact aggressive behavior. Additionally,the influence of stress on reproductive functions, particularly the role of androgens in stress-induced aggression, adds further complexity to this relationship. The review also discusses the future directions and implications for clinical interventions. Understanding the neurobiological mechanisms underlying aggression requires integrating molecular, cellular, and circuit-level approaches. Translational perspectives, including animal models and human studies, can bridge the gap between basic research and clinical applications. Finally, therapeutic strategies for aggression-related disorders are explored, highlighting the importance of targeted interventions based on a comprehensive understanding of the interactions between the HPA and HPG axes. In conclusion, this review provides a comprehensive overview of the physiological and neurobiological mechanisms underlying aggression, with a specific focus on the interplay between the HPA and HPG axes. By elucidating the complex interactions between stress, hormones, and aggressive behavior, this research paves the way for future investigations and potential therapeutic interventions for aggression-related disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535056 | PMC |
http://dx.doi.org/10.1007/s11011-024-01393-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!