The water content, apoptosis, and proliferation of the brain in marine medaka affected by seawater acidification.

Integr Zool

National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.

Published: July 2024

A possible explanation for ocean acidification-induced changes in fish behavior is a systemic effect on the nervous system. Three biological barriers at the blood-brain interface effectively separate the brain from the body fluids. It is not known whether fish brain regions in contact with these barriers are affected by acidification. Here, we studied structural changes in medaka (Oryzias melastigma) brain regions contacting cerebrospinal fluid (CSF) after short-term (7 days) CO exposure. The brain water content decreased significantly and the superficial structure of the pia mater was changed, but there was no obvious damage to the internal structures of the brain after seawater acidification. Seawater acidification also led to an increase in apoptosis and a decrease in the number of proliferative cells in brain areas contacting CSF. These results indicate that the structure of CSF-contacting brain regions in medaka was affected by seawater acidification, and the brain responded to seawater acidification stress by increasing apoptosis and reducing proliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1749-4877.12872DOI Listing

Publication Analysis

Top Keywords

seawater acidification
20
brain regions
12
brain
9
water content
8
medaka seawater
8
acidification
6
seawater
5
content apoptosis
4
apoptosis proliferation
4
proliferation brain
4

Similar Publications

Effects of ocean acidification and warming on apoptosis and immune response in the mussel Mytilus coruscus.

Fish Shellfish Immunol

January 2025

International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China. Electronic address:

Ocean acidification and warming are significant stressors impacting marine ecosystems, exerting profound effects on the physiological ecology of marine organisms. We investigated the impact of ocean acidification and warming on the immune system of mussels, focusing on the regulatory mechanisms of intrinsic and extrinsic apoptosis. The study explored the effects on the immune response ability of mussels (Mytilus coruscus) after 14 and 21 days under combined conditions of different temperatures (20 °C and 30 °C) and pH (8.

View Article and Find Full Text PDF

Molecular response to CO-driven ocean acidification in the larvae of the sea urchin Hemicentrotus pulcherrimus: Evidence from comparative transcriptome analyses.

Mar Environ Res

January 2025

Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China. Electronic address:

In order to explore the impact of CO-driven ocean acidification (OA) on gene expression of sea urchins, gametes of Hemicentrotus pulcherrimus were fertilized and developed to the four-armed larvae in either seawater at current pH levels (pH = 7.98) or in three laboratory-controlled OA conditions (ΔpH = -0.3, -0.

View Article and Find Full Text PDF

Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.

View Article and Find Full Text PDF

Ocean acidification and its regulating factors in the East China Sea off the Yangtze River estuary.

Mar Environ Res

January 2025

Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.

This study examines the seasonal variations in carbonate system parameters in the East China Sea (ECS) off the Yangtze River estuary (YRE) and analyzes the contributions of anthropogenic CO₂ and eutrophication to acidification. Carbonate parameters data were collected during summer 2019 and combined winter 2011. During winter, acidification is primarily driven by rising atmospheric CO₂, with minimal impact from biological processes.

View Article and Find Full Text PDF

Delayed onset of ocean acidification in the Gulf of Maine.

Sci Rep

January 2025

Department of Botany, Smithsonian Institution, National Museum of Natural History, Washington, DC, 20013, USA.

The Gulf of Maine holds significant ecological and economic value for fisheries and communities in north-eastern North America. However, there is apprehension regarding its vulnerability to the effects of increasing atmospheric CO. Substantial recent warming and the inflow of low alkalinity waters into the Gulf of Maine have raised concerns about the impact of ocean acidification on resident marine calcifiers (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!