A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioadhesive-Inspired Ionomer for Membrane Electrode Assembly Interface Reinforcement in Fuel Cells. | LitMetric

Bioadhesive-Inspired Ionomer for Membrane Electrode Assembly Interface Reinforcement in Fuel Cells.

J Am Chem Soc

A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.

Published: August 2024

Anion exchange membrane fuel cells promise a sustainable and ecofriendly energy conversion pathway yet suffer from insufficient performance and durability. Drawing inspiration from mussel foot adhesion proteins for the first time, we herein demonstrate catechol-modified ionomers that synergistically reinforce the membrane electrode assembly interface and triple-phase boundary inside catalyst layers. The resulting ionomers present exceptional alkaline stability with only slight ionic conductivity declines after treatment in 2 M NaOH aqueous solution at 80 °C for 2500 h. Adopting catechol-modified ionomer as both anion exchange membrane and binder achieves a single-cell performance increase of 34%, and more importantly, endows fuel cell operation at a current density of 0.4 A cm for over 300 h with negligible performance degradation (with a cell voltage decay rate of 0.03 mV h). Combining theoretical and experimental investigations, we reveal the molecular adhesion mechanism between the catechol-modified ionomer and Pt catalyst and illuminate the effect on the catalyst layer microstructure. Of fundamental interest, this bioadhesive-inspired strategy is critical to enabling knowledge-driven ionomer design and is promising for diverse membrane electrode assembly configurational applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c06961DOI Listing

Publication Analysis

Top Keywords

membrane electrode
12
electrode assembly
12
assembly interface
8
fuel cells
8
anion exchange
8
exchange membrane
8
catechol-modified ionomer
8
membrane
5
bioadhesive-inspired ionomer
4
ionomer membrane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!