Modeling the lumbar facet capsular ligament's (FCL) mechanical behavior under various physiological motions has often been a challenge due to limited knowledge about the on-joint in situ ligament state arising from attachment to the bone or other internal loads. Building on prior work, this study presents an enhanced computational model of the lumbar facet capsular ligament by incorporating residual strain and joint pressurization strain, factors neglected in prior models. Further, the model can predict strain and stress distribution across the ligament under various spinal motions, highlighting the influence of the ligament's attachment to the bone, internal synovial fluid pressurization, and distribution of collagen fiber alignment on the overall mechanical response of the ligament. Joint space inflation was found to influence the total observed stress and strain fields, both at rest and during motion. A significant portion of the ligament was found to be in tension, even in the absence of external load. Additionally, the model's ability to account for residual strain offers a more realistic portrayal of the collagen fibers and elastin matrix's role in ligament mechanics. We conclude that (1) computational models of the lumbar facet capsular ligament should not assume that the ligament is unloaded when the joint is in its neutral position, and (2) the ligament is nearly always in tension, which may be important in terms of its long-term growth and remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369690PMC
http://dx.doi.org/10.1115/1.4066091DOI Listing

Publication Analysis

Top Keywords

lumbar facet
16
facet capsular
16
residual strain
12
ligament
9
strain joint
8
joint pressurization
8
attachment bone
8
bone internal
8
capsular ligament
8
ligament tension
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!