Microbial adaptations to extreme environments can lead to biotechnological applications. This study aimed to evaluate the resistance of Antarctic Cladosporium to adverse conditions (temperature, salinity, UV radiation, and nutrients) and refine their taxonomy. Sequencing and phylogenetic analysis using ITS-act markers resulted in a more accurate taxonomic identification, revealing the presence of five different species, belonging to the complexes C. cladosporioides and C. sphaerospermum. The growth at different temperatures indicates that the soil isolates LAMAI 564 and 1800 (phylogenetically closely related) and LAMAI 2541 are psychrophilic, while the other isolates are psychrotolerant. The fungi isolated from the saline samples LAMAI 595, 616, and 1369 showed better growth results at higher salinity (15%). The fungi most resistant to UV radiation were isolated from terrestrial and marine samples (LAMAI 595, 616, 1800, and 564). LAMAI 595 and 616 (phylogenetically closely related and isolated from the same kind of sample) showed the capacity of nutritional versatility, growing well in both rich and poor-nutrient media. The fungus LAMAI 595 was the most promising for biotechnological application, exceeding the other isolates in the harsh conditions studied. The resistance of the Antarctic Cladosporium to adverse conditions opens new perspectives in the field of applied microbiology of extremophiles.

Download full-text PDF

Source
http://dx.doi.org/10.1590/0001-3765202420230743DOI Listing

Publication Analysis

Top Keywords

lamai 595
16
adverse conditions
12
595 616
12
resistance antarctic
8
antarctic cladosporium
8
cladosporium adverse
8
phylogenetically closely
8
samples lamai
8
lamai
6
resistance adverse
4

Similar Publications

Microbial adaptations to extreme environments can lead to biotechnological applications. This study aimed to evaluate the resistance of Antarctic Cladosporium to adverse conditions (temperature, salinity, UV radiation, and nutrients) and refine their taxonomy. Sequencing and phylogenetic analysis using ITS-act markers resulted in a more accurate taxonomic identification, revealing the presence of five different species, belonging to the complexes C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!