Traumatic Brain Injury (TBI) is attributed to a forceful impact on the brain caused by sharp, penetrating bodies, like bullets and any sharp object. Some popular instances like falls, traffic accidents, physical assaults, and athletic injuries frequently cause TBI. TBI is the primary cause of both mortality and disability among young children and adults. Several individuals experience psychiatric problems, including cognitive dysfunction, depression, post-traumatic stress disorder, and anxiety, after primary injury. Behavioral changes post TBI include cognitive deficits and emotional instability (anxiety, depression, and post-traumatic stress disorder). These alterations are linked to neuroinflammatory processes. On the other hand, the direct impact mitigates inflammation insult by the release of pro-inflammatory cytokines, namely IL-1β, IL-6, and TNF-α, exacerbating neuronal injury and contributing to neurodegeneration. During the excitotoxic phase, activation of glutamate subunits like NMDA enhances the influx of Ca and leads to mitochondrial metabolic impairment and calpain-mediated cytoskeletal disassembly. TBI pathological insult is also linked to transcriptional response suppression Nrf-2, which plays a critical role against TBI-induced oxidative stress. Activation of NRF-2 enhances the expression of anti-oxidant enzymes, providing neuroprotection. A possible explanation for the elevated levels of NO is that the stimulation of NMDA receptors by glutamate leads to the influx of calcium in the postsynaptic region, activating NOS's constitutive isoforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0118715273318552240708055413 | DOI Listing |
Neurochem Res
January 2025
Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China.
Neuropathic pain (NP) imposes a significant burden on individuals, manifesting as nociceptive anaphylaxis, hypersensitivity, and spontaneous pain. Previous studies have shown that traumatic stress in the nervous system can lead to excessive production of hydrogen sulfide (HS) in the gut. As a toxic gas, it can damage the nervous system through the gut-brain axis.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Zhou shan hui shui Community,199 Hailing South Road, Taizhou, Jiangsu Province, 225300, China.
Traumatic brain injury (TBI)-associated neuroinflammation and neurotoxicity can induce gastrointestinal dysfunction through the brain-gut axis. Partially hydrolyzed guar gum (PHGG) was demonstrated to exert beneficial health effects by altering gut microbiota and short-chain fatty acids (SCFAs) production. Our study aimed to explore the effects of PHGG on gastrointestinal dysfunction in TBI mouse models.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Cariology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, 600 077, Chennai, India.
Neurosurg Rev
January 2025
Lab in Biotechnology and Biosignal Transduction, Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600 077, India.
J Head Trauma Rehabil
January 2025
Author Affiliations: Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia (Prof Ponsford and Drs Spitz, Pyman, Carrier, Hicks, and Nguyen); Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (Dr Spitz); TIRR Memorial Hermann Research Center Houston, Texas (Drs Sander and Sherer); and H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine & Harris Health System, Houston, Texas (Drs Sander and Sherer).
Objectives: This study aimed to identify outcome clusters among individuals with traumatic brain injury (TBI), 6 months to 10 years post-injury, in an Australian rehabilitation sample, and determine whether scores on 12 dimensions, combined with demographic and injury severity variables, could predict outcome cluster membership 1 to 3 years post-injury.
Setting: Rehabilitation hospital.
Participants: A total of 467 individuals with TBI, aged 17 to 87 (M = 44.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!