Mechanistic insights into rumen function promotion through yeast culture () metabolites using and models.

Front Microbiol

Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.

Published: July 2024

AI Article Synopsis

  • The study investigates how yeast culture (YC) can improve the growth and health of lambs, focusing on its effects on rumen fermentation and overall performance.
  • Various types of YC were tested on different treatment groups to identify which metabolites effectively enhanced lamb productivity.
  • The findings help to understand which compounds in YC can be combined with other chemicals to optimize lamb growth and health outcomes.

Article Abstract

Introduction: Yeast culture (YC) enhances ruminant performance, but its functional mechanism remains unclear because of the complex composition of YC and the uncertain substances affecting rumen fermentation. The objective of this study was to determine the composition of effective metabolites in YC by exploring its effects on rumen fermentation , growth and slaughter performance, serum index, rumen fermentation parameters, rumen microorganisms, and metabolites in lambs.

Methods: In Trial 1, various YCs were successfully produced, providing raw materials for identifying effective metabolites. The experiment was divided into 5 treatment groups with 5 replicates in each group: the control group (basal diet without additives) and YC groups were supplemented with 0.625‰ of four different yeast cultures, respectively (groups A, B, C, and D). Rumen fermentation parameters were determined at 3, 6, 12, and 24 h A univariate regression model multiple factor associative effects index (MFAEI; y) was established to correlate the most influential factors on rumen fermentation with YC metabolites (x). This identified the metabolites promoting rumen fermentation and optimal YC substance levels. In Trial 2, metabolites in YC not positively correlated with MFAEI were excluded, and effective substances were combined with pure chemicals (M group). This experiment validated the effectiveness of YC metabolites in lamb production based on their impact on growth, slaughter performance, serum indices, rumen parameters, microorganisms, and metabolites. Thirty cross-generation rams (Small tail Han-yang ♀ × Australian white sheep ♂) with good body condition and similar body weight were divided into three treatment groups with 10 replicates in each group: control group, YC group, pure chemicals combination group (M group).

Results: Growth performance and serum index were measured on days 30 and 60, and slaughter performance, rumen fermentation parameters, microorganisms, and metabolites were measured on day 60. The M group significantly increased the dressing percentage, and significantly decreased the GR values of lambs (  < 0.05). The concentration of growth hormone (GH), Cortisol, insulin (INS), and rumen VFA in the M group significantly increased ( < 0.05).

Discussion: These experiments confirmed that YC or its screened effective metabolites positively impact lamb slaughter performance, rumen fermentation, and microbial metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287897PMC
http://dx.doi.org/10.3389/fmicb.2024.1407024DOI Listing

Publication Analysis

Top Keywords

rumen fermentation
28
slaughter performance
12
performance serum
12
fermentation parameters
12
microorganisms metabolites
12
rumen
11
metabolites
10
group
9
yeast culture
8
effective metabolites
8

Similar Publications

Crop residues have shown promise as non-conventional feed sources to enhance animal health and growth. This study evaluated the effects of chili straw (CS) on rumen fermentation, meat quality, amino and fatty acid composition, and rumen microbial diversity in sheep. Fifty F1 Dorper×Hu lambs (29.

View Article and Find Full Text PDF

The objective of this study was to compare fermentation profile and microbial diversity from rumen samples collected using a rumen cannula (RC) or stomach tube (ST) in lactating dairy cows. Three ruminally cannulated lactating dairy cows were used in a 3 × 3 Latin square design. The experimental period was 28 d and rumen fluid was collected 4 h after feeding on d 22 and 26 of each experimental period.

View Article and Find Full Text PDF

Reductive acetogenesis is a dominant process in the ruminant hindgut.

Microbiome

January 2025

Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.

Background: The microbes residing in ruminant gastrointestinal tracts play a crucial role in converting plant biomass to volatile fatty acids, which serve as the primary energy source for ruminants. This gastrointestinal tract comprises a foregut (rumen) and hindgut (cecum and colon), which differ in structures and functions, particularly with respect to feed digestion and fermentation. While the rumen microbiome has been extensively studied, the cecal microbiome remains much less investigated and understood, especially concerning the assembling microbial communities and overriding pathways of hydrogen metabolism.

View Article and Find Full Text PDF

The rumen microbiota plays a vital role in the nutrient metabolism affecting the growth of velvet antler. However, the fermentation patterns and dynamics of the rumen microbiota across growth stages of velvet antler remain largely unexplored. Here, we employed an fermentation approach to assess fermentation parameters and microbial composition in the rumen liquid of sika deer during the early growth (EG), metaphase growth (MG), and fast growth (FG) phases .

View Article and Find Full Text PDF

Introduction: The residual black wolfberry fruit (RBWF) is rich in nutrients and contains a diverse range of active substances, which may offer a viable alternative to antibiotics. This experiment was conducted to investigate the impact of varying levels of RBWF on the growth performance and rumen microorganisms of fattening sheep, and to quantify its economic benefits.

Methods: In this experiment, 40 three-month-old and male Duolang sheep with an average weight of 29.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!