Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The skin microbiome plays a pivotal role in the production of attractive cues detected by mosquitoes. Here, we leveraged recent advances in genetic engineering to significantly reduce the production of L-(+)-lactic acid as a strategy to reduce mosquito attraction to the highly prominent skin commensals and Engraftment of these engineered bacteria onto the skin of mice reduced mosquito attraction and feeding for up to 11 uninterrupted days, which is considerably longer than the several hours of protection conferred by the leading chemical repellent N,N-diethyl-meta-toluamide. Taken together, our findings demonstrate engineering the skin microbiome to reduce attractive volatiles represents an innovative untapped strategy to reduce vector attraction, preventing bites, and pathogen transmission. These findings set the stage for new classes of long-lasting microbiome-based repellent products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287867 | PMC |
http://dx.doi.org/10.1093/pnasnexus/pgae267 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!