The intrinsic resolution of Positron Emission Tomography (PET) imaging is bound by positron range effects, wherein the radioactive decay of the imaging tracer occurs at a disjoint location from positron annihilation. Compounding this issue are the variable ranges positrons achieve, depending on tracer species (the energy they are emitted with) and the medium they travel in (bone vs soft tissue, for example) - causing the range to span more than an order of magnitude across various study scenarios (~0.19 mm to ~6.4 mm). Radioisotopes, such as Zr-89, exhibit dual emissions of positron and prompt gammas, offering an opportunity for accurate tracer positioning as prompt gammas originate from the tracer location. These multi-emission radiotracers have historically suffered from increased noise corresponding to the third gamma interfering in annihilation gamma coincidence pairing. Recent advancements, however, have brought to light the unique property of annihilation gammas having scattering kinematics distinct from random gamma pairs. These properties are born from the singular quantum entanglement state available to the gamma pair following para-positronium decay which prescribes linearly orthogonal polarization. Such coherent polarization is not shared by prompt gamma emissions, offering an opportunity for their discrimination. We present an investigation into this technique, comparing the distribution of relevant scattering kinematics of entangled annihilation gammas and corresponding prompt gammas via a Monte Carlo simulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288065 | PMC |
http://dx.doi.org/10.5604/01.3001.0054.1817 | DOI Listing |
J Neuroinflammation
January 2025
Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, 92697, USA.
Background: Immunothrombosis is the process by which the coagulation cascade interacts with the innate immune system to control infection. However, the formation of clots within the brain vasculature can be detrimental to the host. Recent work has demonstrated that Toxoplasma gondii infects and lyses central nervous system (CNS) endothelial cells that form the blood-brain barrier (BBB).
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
Psoriasis is a chronic, systemic immune-mediated skin disease. Although many new strategies for psoriasis treatment have been developed, there is great need in clinic for treating psoriasis. Gentiopicroside (GPS), derived from Gentiana manshurica Kitagawa, has multiple pharmacological activities including anti-inflammatory, anti-oxidative and antiviral activities.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China.
The zinc-activated channel (ZAC) is an atypical mammalian cys-loop receptor (CLR) that is activated by zinc ions and protons, allowing cations to pass through. The molecular mechanism that ligands use to activate ZAC remains elusive. Here, we present three cryo-electron microscopy reconstructions of human ZAC (hZAC) under different conditions.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Department of Microbiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
Background/objectives: The emergence of the Omicron variant has complicated COVID-19 control and prompted vaccine updates. Recent studies have shown that a fourth dose significantly protects against infection and severe disease, though long-term immunity data remain limited. This study aimed to assess Anti-S-RBD antibodies and interferon-γ levels in healthcare workers 12 months after receiving bivalent Original/Omicron BA.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Center for Precision Neutrino Research, Department of Physics, Chonnam National University, Gwangju 61186, Republic of Korea.
Reactor-emitted electron antineutrinos can be detected via the inverse beta decay reaction, which produces a characteristic signal: a two-fold coincidence between a prompt positron event and a delayed neutron capture event within a specific time frame. While liquid scintillators are widely used for detecting neutrinos reacting with matter, detection is difficult because of the low interaction of neutrinos. In particular, it is important to distinguish between neutron (n) and gamma (γ) signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!