Near-infrared photosensitizers are valuable tools to improve treatment depth in photodynamic therapy (PDT). However, their low singlet oxygen (O) generation ability, indicated by low O quantum yield, presents a formidable challenge for PDT. To overcome this challenge, the heptamethine cyanine was decorated with biocompatible S (Scy7) and Se (Secy7) atom. We observe that Secy7 exhibits a redshift in the main absorption to ~840 nm and an ultra-efficient O generation capacity. The emergence of a strong intramolecular charge transfer effect between the Se atom and polymethine chain considerably narrows the energy gap (0.51 eV), and the heavy atom effect of Se strengthens spin-orbit coupling (1.44 cm), both of which greatly improved the high triplet state yield (61 %), a state that determines the energy transfer to O. Therefore, Secy7 demonstrated excellent O generation capacity, which is ~24.5-fold that of indocyanine green, ~8.2-fold that of IR780, and ~1.3-fold that of methylene blue under low-power-density 850 nm irradiation (5 mW cm). Secy7 exhibits considerable phototoxicity toward cancer cells buried under 12 mm of tissue. Nanoparticles formed by encapsulating Secy7 within amphiphilic polymers and lecithin, demonstrated promising antitumor and anti-pulmonary metastatic effects, exhibiting remarkable potential for advancing PDT in deep tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202411802 | DOI Listing |
Cancers (Basel)
December 2024
Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
Background: A phthalimide-functionalized heptamethine cyanine dye, named Ph790H, is used for targeted photothermal cancer therapy in vivo. We highlight that the chemical structure of Ph790H is newly designed and synthesized for the first time in this study.
Objectives: By possessing a rigid chloro-cyclohexenyl ring in the heptamethine cyanine backbone, the bifunctional near-infrared (NIR) fluorescent dye Ph790H can be preferentially accumulated in tumor without the need for additional targeting ligands, which is defined as the "structure-inherent tumor targeting" concept.
Sci Rep
January 2025
School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
In this work, we synthesize a quinoline-based heptamethine cyanine, QuCy7, with sulfonate groups to enhance water solubility. This dye demonstrates exceptional near-infrared absorption beyond 750 nm, accompanied by photothermal properties but low photostability. Encapsulating QyCy7 with polyethylene glycol to form nanopolymer, QuCy7@mPEG NPs, addresses the issue of its photoinstability.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Emergency and Critical Care Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
Photodynamic therapy (PDT) is a minimally invasive treatment that elicits tumor apoptosis using laser light exclusively applied to the tumor site. IR-783, a heptamethine cyanine (HMC) dye, impedes the proliferation of breast cancer cells, even without light. Although studies have investigated the efficacy of IR-783 in cell and animal studies, its efficacy in clinical settings remains unknown.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, South Korea.
One of the most significant challenges for image-guided cancer-targeted therapy is to develop multifunctional optical contrast agents enabling simultaneous targeting and therapy. Herein, a feasible strategy is based on the incorporation of therapeutic moieties into the non-delocalized structure of polymethine indocyanines, known as the "structure-inherent targeting" concept. By possessing a rigid chloro-cyclohexenyl ring in the heptamethine cyanine backbone, a new type of multifunctional near-infrared fluorescent dye, Ph790H, that targets tumor without the need for additional targeting ligands is synthesized.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
The substantial mortality and morbidity of hepatocellular carcinoma, representing 90% of liver cancers, poses a significant health burden. The effectiveness of traditional hepatocellular carcinoma treatments such as surgical resection, radiotherapy, and chemotherapy is limited, underscoring the need for innovative therapeutic strategies. To this end, we synthesized phthalyl-pullulan nanoparticles encapsulating IR780 (an NIR-responsive heptamethine cyanine dye) and R848 (resiquimod; a TLR7/8 agonist) (PIR NPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!