Value addition of MXenes as photo-/electrocatalysts in water splitting for sustainable hydrogen production.

Chem Commun (Camb)

Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.

Published: August 2024

The energy transition from fossil fuel-based to renewable energy is a global agenda. At present, a major concern in the green hydrogen economy is the demand for clean fuels and non-noble materials to produce hydrogen through water splitting. Researchers are focusing on addressing this concern with the help of the development of appropriate non-noble-based photo-/electrocatalytic materials. A new class of two-dimensional materials, MXenes, have recently shown tremendous potential for water splitting to produce H a photoelectrochemical process. The unique properties of emerging 2D MXene materials, such as hydrophilic surface functionalities, higher surface-to-volume ratios, and inherent flexibility, present these materials as appropriate photo-/electrocatalytic materials. Unique value addition and innovative strategies such as the introduction of end-group modification, heterojunctions, and nanostructure engineering have shown the potential of MXene materials as emerging photo-/electrocatalysts for water splitting. When integrated with conventional noble metal catalysts, MXene-based catalysts demonstrated a lower overpotential for hydrogen and oxygen evolution reactions and a remarkable boost in performance for enhanced H production rates surpassing those of pristine noble metal-based catalysts. These promote future perspectives for the utilization of chemically synthesized MXenes as alternative photo-/electrocatalysts. Future research direction should focus on MXene synthesis and utilization for surface modification, composite formation, stabilization, and optimization in synthesis methods and post-synthesis treatments. This review highlights the progress in the understanding of fundamental mechanisms and issues associated with water splitting, influencing factors of MXenes, their value addition role, and application strategies for water splitting, including performance, challenges, and outlook of MXene-based photo-/electrocatalysts, in the last five years.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc01811gDOI Listing

Publication Analysis

Top Keywords

water splitting
24
photo-/electrocatalysts water
8
photo-/electrocatalytic materials
8
mxene materials
8
materials
7
water
6
splitting
6
addition mxenes
4
photo-/electrocatalysts
4
mxenes photo-/electrocatalysts
4

Similar Publications

Synergizing superwetting and architected electrodes for high-rate water splitting.

Nanoscale

January 2025

Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA.

Water splitting is one of the most promising technologies for generating green hydrogen. To meet industrial demand, it is essential to boost the operation current density to industrial levels, typically in the hundreds of mA cm. However, operating at these high current densities presents significant challenges, with bubble formation being one of the most critical issues.

View Article and Find Full Text PDF

Surface S-Doped Nanostructured RuO and Its Anion Passivating Effect for Efficient Overall Seawater Splitting.

ACS Nano

January 2025

State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

Electrolysis of seawater for hydrogen (H) production to harvest clean energy is an appealing approach. In this context, there is an urgent need for catalysts with high activity and durability. RuO electrocatalysts have shown efficient activity in the hydrogen and oxygen evolution reactions (HER and OER), but they still suffer from poor stability.

View Article and Find Full Text PDF

Developing a two-dimensional (2D) ultrathin metal-organic framework plays a significant role in energy conversion and storage systems. This work introduced a facile strategy for engineering ultrathin NiMn-MOF nanosheets on Ni foam (NF) via in situ conversion from NiMn-layered double hydroxide (LDH). The as-synthesized LDH-derived NiMn-MOF (LDH-D NiMn-MOF) nanosheet exhibited an overpotential of 350 mV to drive a current density of 100 mA cm during oxygen evolution reaction (OER) owing to its better redox activity, hierarchical architecture, and intercalating ability.

View Article and Find Full Text PDF

Water splitting by an electrochemical method to generate hydrogen gas is an economic and green approach to resolve the looming energy and environmental crisis. Designing a composite electrocatalyst having integrated multichannel charge separation, robust stability, and low-cost facile scalability could be considered to address the issue of electrochemical hydrogen evolution. Herein, we report a superhydrophilic, noble-metal-free bimetallic nanostructure TiO/NiP coated on graphitic polyacrylonitrile carbon fibers (g-C/TiO/NiP) using a facile hydrothermal method followed by phosphorylation.

View Article and Find Full Text PDF

Dementia Care Practice.

Alzheimers Dement

December 2024

Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.

"Dual Perspectives" integrates multiple MRI scans, creating a nuanced synthesis of grey matter and diffusion-based regional connections. This rendering holds particular significance in the realm of Alzheimer's and dementia research by offering a comprehensive examination of data crucial for understanding these complex neurodegenerative conditions. The inclusion of grey matter provides a detailed insight into the structural composition of the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!