Efficient discovery of antibody binding pairs using a photobleaching strategy for bead encoding.

Lab Chip

Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.

Published: August 2024

Dye-encoded bead-based assays are widely used for diagnostics. Multiple bead populations are required for multiplexing and can be produced using different dye colors, labeling levels, or combinations of dye ratios. Ready-to-use multiplex bead populations restrict users to specific targets, are costly, or require specialized instrumentation. In-house methods produce few bead plexes or require many fine-tuning steps. To expand bead encoding strategies, we present a simple, safe, and cost-effective bench-top system for generating bead populations using photobleaching. By photobleaching commercially available dye-encoded magnetic beads for different durations, we produce three times as many differentiable bead populations on flow cytometry from a single dye color. Our photobleaching system uses a high-power LED module connected to a light concentrator and a heat sink. The beads are photobleached in solution homogeneously by constant mixing. We demonstrate this photobleaching method can be utilized for cross-testing antibodies, which is the first step in developing immunoassays. The assay uses multiple photobleached encoded beads conjugated with capture antibodies to test many binding pairs simultaneously. To further expand the number of antibodies that can be tested at once, several antibodies were conjugated to the same bead, forming a pooled assay. Our assay predicts the performance of antibody pairs used in ultrasensitive Simoa assays, narrowing the number of cross-tested pairs that need to be tested by at least two-thirds and, therefore, providing a rapid alternative for an initial antibody pair screening. The photobleaching system can be utilized for other applications, such as multiplexing, and for photobleaching other particles in solution.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4lc00382aDOI Listing

Publication Analysis

Top Keywords

bead populations
16
binding pairs
8
bead
8
bead encoding
8
photobleaching system
8
photobleaching
7
efficient discovery
4
discovery antibody
4
antibody binding
4
pairs
4

Similar Publications

Background: Peripheral blood mononuclear cells (PBMCs) were obtained from patients across different stages of Parkinson's disease (PD) progression and stimulated ex vivo to develop biomarkers for predicting PD progression.

Method: PBMCs obtained at one time-point from patients with moderate stage PD (>5 years after diagnosis) (n = 30), early stage PD (<5 years after diagnosis) (n = 27), prodromal PD (rapid-eye-movement sleep behavior disorder patients) (n = 14), and healthy controls (HCs) (n = 9) were isolated from whole blood and cryopreserved. Samples were thawed, then pan-monocytes and T-cell populations were isolated from PBMCs and subjected to treatment with vehicle or IFN-γ.

View Article and Find Full Text PDF

Introduction: Overweight and obesity are chronic and multifactorial diseases with a strong genetic component contributing to weight gain across all age groups. This study aimed to conduct a Genome-wide Association Study (GWAS) on a cohort of 1,004 Brazilian children (5-11 years old) to identify specific DNA regions associated with susceptibility to overweight.

Methods: The GWAS was performed on children participating in the SCAALA (Asthma and Allergy Social Changes in Latin America) program, with participants classified as either overweight or non-overweight.

View Article and Find Full Text PDF

Objective: Extracting DNA is essential in wildlife genetic studies, and numerous methods are available. However, the process is costly and time-consuming for non-model organisms, including most wildlife species. Therefore, we optimized a cost-efficient protocol to extract DNA from the muscle tissue of White-tailed Deer using the DNAdvance kit (Beckman Coulter), a magnetic-bead-based approach.

View Article and Find Full Text PDF

Venous Endothelial Cell Transcriptomic Profiling Implicates METAP1 in Preeclampsia.

Circ Res

December 2024

Cardiovascular Research Center, Massachusetts General Hospital, Boston. (C.C., P.X., Z.Y., Y.S., E.S.L., J.D.R., M.C.H.).

Background: Preeclampsia is a hypertensive disorder of pregnancy characterized by systemic endothelial dysfunction. The pathophysiology of preeclampsia remains incompletely understood. This study used human venous endothelial cell (EC) transcriptional profiling to investigate potential novel mechanisms underlying EC dysfunction in preeclampsia.

View Article and Find Full Text PDF

Impact of SARS-CoV-2 on the male reproductive tract: insights from semen analysis and cryopreservation.

J Assist Reprod Genet

December 2024

Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, IRCCS Humanitas Research Hospital, 20089, Rozzano, Milan, Italy.

Purpose: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus behind the COVID-19 pandemic, affects multiple organs, including the male reproductive system. While viral infections can harm male fertility through cytokine storms, the effects of SARS-CoV-2 on fertility are still unclear. Thus, this study aimed to examine the persistence of viral RNA and inflammatory responses in semen following SARS-CoV-2 infection and the safety of conventional freezing and vitrification techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!