Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The smallest triple ring tube-like gold clusters M@Au with M = Mo, W and = 1, 0, -1 are reported for the first time. Incorporation of an M dimer results in a remarkable modification of both atomic and electronic structures of the gold host. While the bare Au cluster exhibits a 3D cage shape, the doubly doped clusters M@Au in all charge states are found to prefer a tubular form composed of three five-membered Au rings in an anti-prism arrangement and stabilized by an M unit placed inside the tube-like Au gold framework. The equilibrium geometry of both M@Au and M@Au is not much modified upon electron detachment from or attachment to their pure gold counterpart. The anion M@Au with 28 itinerant electrons establishes an electron shell configuration of 1S1P1D2S1F, in which the 1F shell splits into four different sub-levels. These stable clusters are thus not magic. Computed results on the first and second hyper-polarizability parameters of the doped clusters show a strong dependence on the charge. Overall, the neutral M@Au is found to exhibit a particularly strong nonlinear optical (NLO) response. These clusters can also be extended to 1D nanowires, providing helpful guidance for the design of novel gold-based nanowires with rich optoelectronic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cp00711e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!