Human monkeypox disease prediction using novel modified restricted Boltzmann machine-based equilibrium optimizer.

Sci Rep

Department of Electronics and Communication Engineering, E.G.S. Pillay Engineering College, Nagapattinam, Tamil Nadu, 611002, India.

Published: July 2024

While the globe continues to struggle to recover from the devastation brought on by the COVID-19 virus's extensive distribution, the recent worrying rise in human monkeypox outbreaks in several nations raises the possibility of a novel worldwide pandemic. The symptoms of human monkeypox resemble those of chickenpox and traditional measles, with a few subtle variations like the various kinds of skin blisters. A range of deep learning techniques have demonstrated encouraging results in image-oriented tumor cell, Covid-19 diagnosis, and skin disease prediction tasks. Hence, it becomes necessary to perform the prediction of the new monkeypox disease using deep learning techniques. In this paper, an image-oriented human monkeypox disease prediction is performed with the help of novel deep learning methodology. Initially, the data is gathered from the standard benchmark dataset called Monkeypox Skin Lesion Dataset. From the collected data, the pre-processing is accomplished using image resizing and image normalization as well as data augmentation techniques. These pre-processed images undergo the feature extraction that is performed by the Convolutional Block Attention Module (CBAM) approach. The extracted features undergo the final prediction phase using the Modified Restricted Boltzmann Machine (MRBM), where the parameter tuning in RBM is accomplished by the nature inspired optimization algorithm referred to as Equilibrium Optimizer (EO), with the consideration of error minimization as the major objective function. Simulation findings demonstrate that the proposed model performed better than the remaining models at monkeypox prediction. The proposed MRBM-EO for the suggested human monkeypox disease prediction model in terms of RMSE is 75.68%, 70%, 60.87%, and 43.75% better than PSO-SVM, Xception-CBAM-Dense, ShuffleNet, and RBM respectively. Similarly, the proposed MRBM-EO for the suggested human monkeypox disease prediction model with respect to accuracy is 9.22%, 7.75%, 3.77%, and 10.90% better than PSO-SVM, Xception-CBAM-Dense, ShuffleNet, and RBM respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289438PMC
http://dx.doi.org/10.1038/s41598-024-68836-3DOI Listing

Publication Analysis

Top Keywords

human monkeypox
24
monkeypox disease
20
disease prediction
20
deep learning
12
prediction
8
modified restricted
8
restricted boltzmann
8
equilibrium optimizer
8
monkeypox
8
learning techniques
8

Similar Publications

An unprecedented global outbreak caused by the monkeypox virus (MPXV) prompted the World Health Organization to declare a public health emergency of international concern on July 23, 2022. Therapeutics and vaccines for MPXV are not widely available, necessitating further studies, particularly in drug repurposing area. To this end, the standardization of in vitro infection systems is essential.

View Article and Find Full Text PDF

In recent decades, the threats of ticks and tick-borne diseases (TBDs) increased extensively with environmental change, urbanization, and rapidly changing interactions between human and animals. However, large-scale distribution of tick and TBD risks as well as their relationship with environmental change remain inadequately unclear. Here, we first proposed a "tick-pathogen-habitat-human" model to project the global potential distribution of main pathogenic ticks using a total of 70,714 occurrence records.

View Article and Find Full Text PDF

Background: In May 2022, after the suspension of the mobility restrictions due to the COVID-19 pandemic, the first outbreak of MPOX virus, transmitted from human to human, was detected outside of Africa, affecting mostly sexually active men who have sex with men. Our aim is to report the first outbreak of MPOX in Barcelona city in the period from 5/2022 to 5/2023 and the subsequent surge of cases in 8/2023.

Methods: We performed a descriptive study of all notified cases in city residents, obtained through epidemiological surveys.

View Article and Find Full Text PDF

Background: The 2022 mpox outbreak in the United States disproportionately affected gay, bisexual, and other men who have sex with men (GBMSM). Uptake of mpox testing may be related to symptomology, sociodemographic characteristics, and behavioral characteristics.

Objective: This study aimed to describe suspected mpox symptoms and testing uptake among a sample of GBMSM recruited via the internet in the United States in August 2022.

View Article and Find Full Text PDF

Survival of viruses in water microcosms.

Sci Total Environ

January 2025

Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain. Electronic address:

Human enteric viruses and emerging viruses such as severe acute respiratory syndrome coronavirus 2, influenza virus and monkeypox virus, are frequently detected in wastewater. Human enteric viruses are highly persistent in water, but there is limited information available for non-enteric viruses. The present study evaluated the stability of hepatitis A virus (HAV), murine norovirus (MNV), influenza A virus H3N2 (IAV H3N2), human coronavirus (HCoV) 229E, and vaccinia virus (VACV) in reference water (RW), effluent wastewater (EW) and drinking water (DW) under refrigeration and room temperature conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!