Suppression of gp130 attenuated insulin-mediated signaling and glucose uptake in skeletal muscle cells.

Sci Rep

Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, Hyogo, 657-8501, Japan.

Published: July 2024

The aim of the present study was to investigate the effects of Oncostatin M receptor (OSMR) subunit gp130 knockdown on insulin-stimulated glucose metabolism-related signaling pathways and glucose uptake in skeletal muscle cells. siRNA-mediated gp130 knockdown was conducted in C2C12 muscle cells, and insulin was added and incubated for 1 h. The cells were cultivated to analyze the mRNA levels of gp130, phosphorylation of STAT3, and glucose metabolism-regulated signaling pathways, and OSM levels in the culture medium were analyzed. The phosphorylation of STAT 3 was significantly decreased in gp130 cell. The insulin stimulation was significantly increased in both gp130 and gp130 and the phosphorylation of IRS-1 Ser 1101 was significantly decreased in gp130. PI3-kinase activity and Akt Thr 308 phosphorylation were significantly decreased in gp130. The insulin-stimulated increase in glucose uptake rate was significantly attenuated in gp130. In the culture medium, OSM levels were significantly lower in gp130compared to gp130 cell. In conclusion, the knockdown of gp130 caused a decrease in STAT 3 phosphorylation and resulted in the attenuation of insulin-mediated glucose metabolism signaling in skeletal muscle cells. Thus, an excessive increase in extracellular OSM may induce blunted insulin action in skeletal muscle cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289081PMC
http://dx.doi.org/10.1038/s41598-024-68613-2DOI Listing

Publication Analysis

Top Keywords

muscle cells
20
skeletal muscle
16
glucose uptake
12
decreased gp130
12
gp130
11
uptake skeletal
8
gp130 knockdown
8
signaling pathways
8
gp130 phosphorylation
8
osm levels
8

Similar Publications

Background: Skeletal muscle injury caused by excessive exercise is one of the most commonly seen clinical diseases. It is indispensable to explore drugs for treating and relieving skeletal muscle injury. Gallic acid (GA) is a polyphenolic extract that has anti-inflammatory and antioxidant biological activities.

View Article and Find Full Text PDF

Activators of the 26S proteasome when protein degradation increases.

Exp Mol Med

January 2025

Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.

In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied.

View Article and Find Full Text PDF

Gallbladder-derived retinoic acid signalling drives reconstruction of the damaged intrahepatic biliary ducts.

Nat Cell Biol

January 2025

State Key laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China.

Severe damage to the intrahepatic biliary duct (IHBD) network occurs in multiple human advanced cholangiopathies, such as primary sclerosing cholangitis, biliary atresia and end-stage primary biliary cholangitis. Whether and how a severely damaged IHBD network could reconstruct has remained unclear. Here we show that, although the gallbladder is not directly connected to the IHBD, there is a common hepatic duct (CHD) in between, and severe damage to the IHBD network induces migration of gallbladder smooth muscle cells (SMCs) to coat the CHD in mouse and zebrafish models.

View Article and Find Full Text PDF

Ribitol and ribose treatments differentially affect metabolism of muscle tissue in FKRP mutant mice.

Sci Rep

January 2025

McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health Musculoskeletal Institute, 1000 Blythe Blvd. , Charlotte, NC, 28231, USA.

Dystroglycanopathy is characterized by reduced or lack of matriglycan, a cellular receptor for laminin as well as other extracellular matrix proteins. Recent studies have delineated the glycan chain structure of the matriglycan and the pathway with key components identified. FKRP functions as ribitol-5-phosphate transferase with CDP-ribitol as the substrate for the extension of the glycan chain.

View Article and Find Full Text PDF

Notably, the C-X-C Motif Chemokine Ligand 12/C-X-C Chemokine Receptor Type 4 (CXCL12/CXCR4) signalling pathway's activation is markedly increased in a mouse model of abdominal aortic aneurysms (AAA). Nonetheless, the precise contribution of this pathway to AAA development remains to be elucidated. The AAA mouse model was induced by local incubation with elastase and oral administration of β-aminopropionitrile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!