In this paper, a single stage buck-boost DC-AC converter based on coupled inductors is presented for renewable energy and electric vehicle applications. The proposed topology works with only three semiconductor switches, two diodes, and three coupled inductors to transfer input DC voltage to a high gain or low gain output AC voltage. A coupled inductor is used instead of normal inductors, which will reduce core and size requirements. The sinusoidal pulse width modulation strategy is used in this paper for controlling the main switch. There are many merits in the presented topology, like high gain up to five times of input voltage, compact size, less number of components, which results in reducing the overall cost, reducing switching loss, and increasing the converter efficiency. The simulation study is carried out using MATLAB/SIMULINK to simulate the operation of the proposed converter. Also, an experimental setup is built up to examine the actual operation of the proposed converter. There is a good agreement between simulation and experimental results which increases the validation and confidence of the model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289493 | PMC |
http://dx.doi.org/10.1038/s41598-024-67086-7 | DOI Listing |
Adv Sci (Weinh)
January 2025
Mechanical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
Wireless, passive, and flexible strain sensors can transform structural health monitoring across various applications by eliminating the need for wired connections and active power sources. Such sensors offer the dual benefits of operational simplicity and high-function adaptability. Herein, a novel wireless sensor is fabricated using radio frequency (RF) technology for passive, wireless measurement of mechanical strains.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, 51666-16471, Iran.
This research presents an innovative design for a non-isolated DC-DC converter, which utilizes a single switch in a high step-up configuration. The key element of this design is a three-winding coupled inductor (TWCI), which plays a crucial role in achieving a substantial voltage increase. By utilizing a low duty cycle, the converter minimizes conduction losses in the power switch, resulting in enhanced efficiency.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical and Electronics Engineering, Dr.N.G.P. Institute of Technology, Coimbatore, India.
Multiport converters are the most reliable and integral component for latest renewable source integration with multiple inputs. This article is one among the kind, which proposes a novel Coupled Inductor based Four Port topology Multiport Converter (CI-FP-MPC) for integrating multiple PV sources with different voltages. The adoption of coupled inductor contributes an increased voltage gain with reduced stress on the switches and diodes.
View Article and Find Full Text PDFSci Rep
November 2024
Renewable Energy Lab, Communications and Networks Department, College of Engineering, Prince Sultan University, Riyadh, 11586, Saudi Arabia.
Fuel cell-based electric vehicles (EVs) are gaining popularity in the automotive industry due to strict carbon emissions and fuel efficiency regulations. Fuel cells have inherently low voltage characteristics, making it challenging to interface with EV drive systems. This work proposes a unique topology implementing a non-isolated high step-up DC-DC converter to integrate the Proton Exchange Membrane Fuel (PEMF) cell with the EV motor drive.
View Article and Find Full Text PDFCogn Neurodyn
October 2024
Department of Physics, Lanzhou University of Technology, Lanzhou, 730050 China.
Perception of voice means acoustic electric conversion in the auditory system, and changes of external magnetic field can affect the neural activities by taming the channel current via some field components including memristor and Josephson junction. Combination of two capacitors via an electric component is effective to describe the physical property of artificial cell membrane, which is often used to reproduce the characteristic of electric activities in cell membrane. Involvement of two capacitive variables for two capacitors in the neural circuit can discern the effect of field diversity in the media in two sides of the cell membrane in theoretical way.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!