Due to the cancer therapy-related cardiovascular toxicity, heart failure following cancer therapy has a significant mortality rate. Gene-targeted therapy promotes the re-entry of existing cardiomyocytes into the cell cycle to achieve myocardial regeneration, which is a promising strategy for preventing and treating heart failure after myocardial infarction. Circular RNAs (circRNAs) are considered as potential targets for myocardial regeneration due to their strong stability, resistance to degradation, and potential role in heart development and cardiovascular diseases. By comparing the myocardial tissue of mice in the sham operation group and the Doxorubicin therapy group (DOX), we observed a significant decrease in Cirsorbs expression in the DOX group. Cirsorbs was predominantly localized in cardiomyocytes and exhibited high conservation. Subsequent investigations revealed that Cirsorbs could promote myocardial proliferation and inhibit myocardial apoptosis. Mechanistic studies further demonstrated that Cirsorbs could bind to miR99 and reduce its expression level. Meanwhile, miR99 was found to bind to GATA4 mRNA and decrease its expression level. The binding of Cirsorbs to miR99 alleviated the repression of miR99, thereby enhancing GATA4 expression and the transcription of downstream cyclin A2 and cyclin E1. This, in turn, increased cardiomyocyte proliferation and reduced apoptosis. In conclusion, Cirsorbs holds promise as an effective target for myocardial regeneration in reducing cancer therapy-related cardiovascular toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289204 | PMC |
http://dx.doi.org/10.1007/s12672-024-01075-0 | DOI Listing |
Curr Cardiol Rep
January 2025
Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India.
Purpose Of Review: This review investigates how post-injury cellular signaling and energy metabolism are two pivotal points in zebrafish's cardiomyocyte cell cycle re-entry and proliferation. It seeks to highlight the probable mechanism of action in proliferative cardiomyocytes compared to mammals and identify gaps in the current understanding of metabolic regulation of cardiac regeneration.
Recent Findings: Metabolic substrate changes after birth correlate with reduced cardiomyocyte proliferation in mammals.
Acta Pharmacol Sin
January 2025
Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
The current treatments and drugs of myocardial infarction (MI) remain insufficient. In recent years, natural products have garnered significant attention for their potential in treating cardiovascular diseases due to their availability and lower toxicity. Saponins, in particular, showed promising effects for cardiac protection.
View Article and Find Full Text PDFRegen Biomater
November 2024
Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China.
Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications.
View Article and Find Full Text PDFMolecules
December 2024
Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia.
Wnt (wingless-type MMTV integration site family) signaling is an evolutionary conserved system highly active during embryogenesis, but in adult hearts has low activities under normal conditions. It is essential for a variety of physiological processes including stem cell regeneration, proliferation, migration, cell polarity, and morphogenesis, thereby ensuring homeostasis and regeneration of cardiac tissue. Its dysregulation and excessive activation during pathological conditions leads to morphological and functional changes in the heart resulting in impaired myocardial regeneration under pathological conditions such as myocardial infarction, heart failure, and coronary artery disease.
View Article and Find Full Text PDFCells
December 2024
Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
Cardiovascular diseases resulting from myocardial infarction (MI) remain a leading cause of death worldwide, imposing a substantial burden on global health systems. Current MI treatments, primarily pharmacological and surgical, do not regenerate lost myocardium, leaving patients at high risk for heart failure. Engineered heart tissue (EHT) offers a promising solution for MI and related cardiac conditions by replenishing myocardial loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!