Decreased AMPK/SIRT1/PDK4 induced by androgen excess inhibits human endometrial stromal cell decidualization in PCOS.

Cell Mol Life Sci

Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China.

Published: July 2024

Polycystic ovary syndrome (PCOS) is a complex common endocrine disorder affecting women of reproductive age. Ovulatory dysfunction is recognized as a primary infertile factor, however, even when ovulation is medically induced and restored, PCOS patients continue to experience reduced cumulative pregnancy rates and a higher spontaneous miscarriage rate. Hyperandrogenism, a hallmark feature of PCOS, affects ovarian folliculogenesis, endometrial receptivity, and the establishment and maintenance of pregnancy. Decidualization denotes the transformation that the stromal compart of the endometrium must undergo to accommodate pregnancy, driven by the rising progesterone levels and local cAMP production. However, studies on the impact of hyperandrogenism on decidualization are limited. In this study, we observed that primary endometrial stromal cells from women with PCOS exhibit abnormal responses to progesterone during in vitro decidualization. A high concentration of testosterone inhibits human endometrial stromal cells (HESCs) decidualization. RNA-Seq analysis demonstrated that pyruvate dehydrogenase kinase 4 (PDK4) expression was significantly lower in the endometrium of PCOS patients with hyperandrogenism compared to those without hyperandrogenism. We also characterized that the expression of PDK4 is elevated in the endometrium stroma at the mid-secretory phase. Artificial decidualization could enhance PDK4 expression, while downregulation of PDK4 leads to abnormal decidualization both in vivo and in vitro. Mechanistically, testosterone excess inhibits IGFBP1 and PRL expression, followed by phosphorylating of AMPK that stimulates PDK4 expression. Based on co-immunoprecipitation analysis, we observed an interaction between SIRT1 and PDK4, promoting glycolysis to facilitate decidualization. Restrain of AR activation resumes the AMPK/SIRT1/PDK4 pathway suppressed by testosterone excess, indicating that testosterone primarily acts on decidualization through AR stimulation. Androgen excess in the endometrium inhibits decidualization by disrupting the AMPK/SIRT1/PDK4 signaling pathway. These data demonstrate the critical roles of endometrial PDK4 in regulating decidualization and provide valuable information for understanding the underlying mechanism during decidualization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335245PMC
http://dx.doi.org/10.1007/s00018-024-05362-5DOI Listing

Publication Analysis

Top Keywords

endometrial stromal
12
decidualization
12
pdk4 expression
12
androgen excess
8
excess inhibits
8
inhibits human
8
human endometrial
8
pcos patients
8
stromal cells
8
testosterone excess
8

Similar Publications

The bovine uterus is susceptible to bacterial infections after calving, particularly from (), which often results in endometritis. Additionally, postpartum stress in cows can elevate cortisol levels in the body, inhibiting endometrial regeneration and reducing immune function, thereby further increasing the risk of infection. Selenium (Se) is a common feed additive in dairy farming, known for its anti-inflammatory and antioxidant effects.

View Article and Find Full Text PDF

Atypical polypoid adenomyoma (APA) is a benign uterine lesion with a premalignant potential and occurs in women of reproductive age. The histological pattern is characterized by irregular epithelial proliferation and muscular stroma. Based on a case report, we performed a systematic review of the literature to assess the main immunohistochemical and molecular markers that contribute to its differential diagnosis against endometrial adenocarcinoma (EC).

View Article and Find Full Text PDF

Objective: Surgery is the mainstay of treatment for low-grade endometrial stromal sarcoma (LG-ESS). While adjuvant hormone therapy is recommended for patients with advanced/recurrent disease, no consensus regarding its use among early-stage patients exists. We aimed to identify correlates of adjuvant hormone therapy use and associations of adjuvant hormone therapy and overall survival (OS) in stage I LG-ESS patients.

View Article and Find Full Text PDF

Nuclear Receptor Subfamily 4 Group A Member 3: A Potential Marker of Endometriosis.

Discov Med

December 2024

Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, 610017 Chengdu, Sichuan, China.

Background: Nuclear receptor subfamily 4 group A member 3 () is lowly expressed in ectopic endometrium and can be degraded by ubiquitination in vascular endothelial cells. Murine double minute 2 () is predicted to be the ubiquitin ligase of . Hence, we investigated the effects of and on endometriosis and clarified corresponding regulatory mechanisms.

View Article and Find Full Text PDF

Ectopic endometrial stromal cell-derived extracellular vesicles encapsulating microRNA-25-3p induce endometrial collagen I deposition impairing decidualization in endometriosis.

Mol Hum Reprod

December 2024

Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Endometrial collagen I undergoes dynamic degradation and remodelling in response to endometrial stromal cell (ESC) decidualization and embryo implantation. However, excessive collagen I deposition in the endometrium during the implantation window may impair decidualization, causing embryo implantation failure in patients with endometriosis (EMS). We found that endometrial collagen I expression during the mid-secretory phase was increased in the EMS group of patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!