Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.asjsur.2024.07.224 | DOI Listing |
Asia Ocean J Nucl Med Biol
January 2025
Research Center for Nuclear Medicine, Shraiati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Objectives: To compare the diagnostic performance of [Ga]-Ga-FAPI-46 and [F]-FDG PET/CT imaging for the detection of lesions and disease staging in breast cancer.
Methods: Twelve female patients with breast cancer (mean age= 49.2±13.
Small
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
Smart hydrogel sensors with intrinsic responsiveness, such as pH, temperature, humidity, and other external stimuli, possess broad applications in innumerable fields such as biomedical diagnosis, environmental monitoring, and wearable electronics. However, it remains a great challenge to develop wearable structural hydrogels that possess simultaneously body temperature-responsive, adhesion-adaptable, and transparency-tunable. Herein, an innovative skin-mountable thermo-responsive hydrogel is fabricated, which endows tunable optical properties and switchable adhesion properties at different temperatures.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Orthopedic Department, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Background: Adhesion formation poses a significant challenge for both patients and hand surgeons following tendon repair. One common strategy to prevent adhesion formation is the use of physical barriers. This study aimed to compare the outcomes of extensor tendon repair with and without the application of the OrthoWrap bioresorbable Sheet, specifically in terms of adhesion prevention.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Hand Surgery and Peripheral Neurosurgery, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
The applications of nanomaterials in regenerative medicine encompass a broad spectrum. The functional nanomaterials, such as Prussian blue and its derivative nanoparticles, exhibit potent anti-inflammatory and antioxidant properties. By combining it with the corresponding scaffold carrier, the fusion of nanomaterials and biotherapy can be achieved, thereby providing a potential avenue for clinical treatment.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi, 710000, People's Republic of China.
Intervertebral disc degeneration (IDD) is a primary contributor to chronic back pain and disability globally, with current therapeutic approaches often proving inadequate due to the complex nature of its pathophysiology. This review assesses the potential of nanoparticle-driven pharmacotherapies to address the intricate challenges presented by IDD. We initially analyze the primary mechanisms driving IDD, with particular emphasis on mitochondrial dysfunction, oxidative stress, and the inflammatory microenvironment, all of which play pivotal roles in disc degeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!