Bone's resistance to fracture depends on its amount and quality, the latter including its structural and material/compositional properties. Bone material properties are dependent on bone turnover rates, which are significantly elevated immediately following menopause. Previously published data reported that following menopause, the amount of organic matrix synthesized at actively forming surfaces is significantly decreased, while glycosaminoglycan content was also modulated at resorbing surfaces, in the cancellous compartment. In the present study, we used Raman microspectroscopic analysis of paired iliac crest biopsies obtained before and shortly after menopause (1 year after cessation of menses) in healthy females to investigate changes in material/compositional properties due to menopause, in the cortical compartment. Specifically, the mineral/matrix ratio, the relative proteoglycan content, the mineral maturity/crystallinity, and the relative pyridinoline collagen cross-link content were determined at actively forming intracortical surfaces (osteons) as a function of tissue age, as well as in interstitial bone. Results indicated that it is the freshly synthesized organic matrix content that significantly declines following menopause, in agreement with what was previously reported for the cancellous compartment. This decline was not evident in the freshly deposited mineral content. None of the compositional/quality properties were altered following menopause either. Finally, no differences in any of the monitored parameters were evident in cortical interstitial bone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2024.117217 | DOI Listing |
J Am Chem Soc
December 2024
Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States.
Bone
October 2024
Osteoporosis Research Center, Creighton University, Omaha, NE, USA.
Bone's resistance to fracture depends on its amount and quality, the latter including its structural and material/compositional properties. Bone material properties are dependent on bone turnover rates, which are significantly elevated immediately following menopause. Previously published data reported that following menopause, the amount of organic matrix synthesized at actively forming surfaces is significantly decreased, while glycosaminoglycan content was also modulated at resorbing surfaces, in the cancellous compartment.
View Article and Find Full Text PDFBone
September 2023
Osteoporosis Research Center, Creighton University, Omaha, NE, USA. Electronic address:
The incidence of diabetes mellitus and the associated complications are growing worldwide, affecting the patients' quality of life and exerting a considerable burden on health systems. Yet, the increase in fracture risk in type 1 diabetes (T1D) patients is not fully captured by bone mineral density (BMD), leading to the hypothesis that alterations in bone quality are responsible for the increased risk. Material/compositional properties are important aspects of bone quality, yet information on human bone material/compositional properties in T1D is rather sparse.
View Article and Find Full Text PDFPolymers (Basel)
January 2023
Department of Mechanical Engineering, Widener University, Chester, PA 19013, USA.
Polylactic acid (PLA) is one of the market's most commonly used biodegradable polymers, with diverse applications in additive manufacturing, specifically fused deposition modeling (FDM) 3D printing. The use of PLA in complex and sophisticated FDM applications is continually growing. However, the increased range of applications requires a better understanding of the material properties of this polymer.
View Article and Find Full Text PDFBone
December 2022
Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria. Electronic address:
Bone material / compositional properties are significant determinants of bone quality, thus strength. Raman spectroscopic analysis provides information on the quantity and quality of all three bone tissue components (mineral, organic matrix, and tissue water). The overwhelming majority of the published reports on the subject concern adults.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!